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1 Introduction and Motivation

As we all know, the initialization of weights and biases in deep neural net-
works can dramatically affect the learning speed. For example, the exponential
vanishing or exploding of gradients during back-propagation may occur if the
selections of the weight initialization and the activation function are not appro-
priate. Therefore, it is important to understand the theoretical properties of un-
trained random networks using some mathematical and statistical tools. There
are different statistical properties of random networks people have studied re-
cently: the singular value distribution of a deep neural network’s input-output
Jacobian, which can be considered as dynamical isometry of the system (see
[7]); the propagation of the variance and correlation through the networks (see
[3]); some isometric property of the expectation and variance to maintain some
numerical stability (see [8]). By studying these properties and analyzing the
asymptotic behaviors of the random neural networks, we can find some condi-
tions on the selections of weight initialization and activation function for neural
networks.
For a fully-connected random neural network of depth L, with widths {N; }1<i<1,

2
we always set weights WZZJ and bias b} have normal distributions N (0, %) and

N(0,0%). For any input = € R, the propagation of this input is given by

d
yi(e) =Y Wha; + b} (1)
j=1
and
N1
i) = > Whe( () + bl (2)
j=1

Considering y!(-) as a Gaussian process, Saufiane Hayou et al. established a the-
ory in [3] to study the propagation of variance and correlation of the Gaussian
process through this fully-connected network. Later, a theoretical understand-
ing of convolutional neural networks with random parameters is built using sim-
ilar methods in [2]. Recent work, [1], reveals such theoretical result for recurrent
neural networks. We would like to follow this trend to study other architectures
under a similar setting and develop their theories in different situations.
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Figure 1: Different kinds of initialization for deep fully-connected neural net-
works show very different performance.

2 Binarized Neural Networks

In this project, we mainly focus on studying Binarized Neural Network (BNN),
which is introduced by Courbariaux et al. in [13].

As we know, each iteration of training a deep neural network involve three
steps: forward propagation of feature information, back propagation and pa-
rameters update (See Figure 1). The mean field theory mainly deal with the
initialization of the neural networks, considering the propagation through the
random neural networks. Therefore, this theory main study the first two steps,
forward propagation and back propagation of gradients at the beginning of the
training. We want to use the mean field theory to study the forward propagation
of statistical information through the deep BNN and also study the back prop-
agation of gradients. The goal of studying forward propagation of statistical
information is to ensure that the random neural networks have a high expres-
sivity to keep information through the deep networks. For the study of the
back propagation of gradients, we want to avoid the vanishing and exploding of
gradients when training the deep neural networks, which is necessary for updat-
ing the parameters and getting a good accuracy after training. The setup for
BNN is stated as below. We define a entry-wise function B(-) as the binarized
function, which may have different definitions in different situations. We will
introduce it next. As stated in [13], the activation function is also the binarized
function which means we also use binary input for computations.

N
vi =Y BWL)B(y; ") +bi, (3)
j=1
st =Bly}), 0<I<L-1, (4)
and
Ny,
ut =st =) BWS)sit +bf (5)
j=1



{1.1. Forward propagation: }
for k = 1to L do
l",{f + Binarize(W}.)
Sk (lt__l“'k'.’
ay. + BatchNorm(sy, ;)
if k < L then
u'[ « Binarize(ay)
end if
end for
{1.2. Backward propagation: }
{Please note that the gradients are not binary. }
Compute g,, = % knowing ay, and a*
for k = Lto1do
if k < L then
9ax = 9at © Ljay|<1
end if
(9sx» 90, ) + BackBatchNorm(ga, , sk, 0k)
9ab_, & 9 W
gwr 95,45,
end for
{2. Accumulating the parameters gradients: }
for k = 1to L do
(li' ' « Update(0y, 1, go, )
H'A'_H « Clip(Update(Wi, v, gwp ), —1,1)
"t « M
end for

Figure 2: The general Algorithm of training a BNN (see [13]). To train a deep
neural network with binary weights we only binarize the weights during the
forward process. Then we use such binarized network to do back propagation
and get the upgrade for the original weights. After updating the parameters, we
binarize the weights agian to the next training process. We can use any kinds
of initialization, but we need to binarize them first before propagation.

Here we consider the fully-connected deep neural network with binary inputs
and binary weights. We do not include dropout and batch normalization, which
we will discuss separably later. For general convolutional neural networks, our
methods and results also hold and we can get more restrictions on the initial-
ization of weights. For more details, we refer to [2].

For BNN, the function B(+) should be the sign function ideally, which means
we constrain both weights and activation to either +1 or —1. The advantage of
doing that is from a hardware perspective. See [9, 10, 12, 13]. The binarized
function B(x), defined by

-1, <0
z := Sign(x) = ’
gn(z) {17 0<a
is not differentiable at zero and has zero derivatives otherwise. This is a bad
property for back propagation so we need to modify it in practice. Also, notice
that there is another stochastic version of binarization function defined by

—1, with probability p = o(z)

Bla) = | .

1, with probability 1 — p,

where o is the hard sigmoid function defined by o(z) := max(0, min(1, Z£)).
This stochastic binarization is more interesting and reasonable but harder to
implementation in practice. So we will not consider the second case in this



project. Instead, in our project, we mainly consider the binarized function
defined by
-1, z< —r
, —r<z<r
S

B(z) =

— 38

which is a hard tahn function, and we require r — 0. In this sense, we have
derivative of B(x), which is B/(a?) = %1[,,%} (2), a simple function. However,
our setting is a little bit different from the original BNN in [13], which only
consider 7 = 1 in there algorithm. In that case, the derivative of ”sign” function
is 1j_1,1j(«). We will explain this in the following two sections.

3 Gaussian Initialization

We consider each Wilj ~ N(0,0%) and b ~ N(0, 02) for initialization and assume
all different random variables are independent with each other. And then we use
the mean field theory to study the propagation of statistical information through
such BNNs. Recall equations (3), (4) and (5). If we analyze this network from
the first layer, it is easy to see that y} is a Gaussian variable when width of
the first layer goes to infinity by the Central Limit Theorem. In fact, y! is a
sum of some independent random variables. Therefore, according to [3, 4, 5],
we can conclude that for all layers, the processes yf() are independent centred
Gaussian processes of covariance K'. Here, y!(a) and y!(b) represent different
inputs of this Gaussian Process. Then, the mean field theory is a good way to
study the forward propagation of such Gaussian Process. Our goal is to study
the propagation of the information stored in the covariance of different inputs.
Considering two different inputs, we want to the propagation of the covariance,
whether it can propagate infinitely far away through this BNN or it will be
collapsed.
We define the covariance ¢!, at I-th layer by ¢!, = E[yl(a)y!(b)]. Then,

Goy = 3 + NiaE[BW])PIE[B(y; " (a)B(y; ' (b))]. (6)
Based on different definitions of binarized function, we can compute the above
equation differently.

3.1 Casel

If the function is a pure Sign function, then B(VVilj)2 = 1 since Wilj is cen-
tered regardless with any distribution. Then, whatever the distribution of the
weight entry is, the covariance ¢!, is a function of N;_;, which means as the
width increasing, the covariance will explode exponentially. This a really bad
situation comparing with general fully-connected neural networks and our fol-
lowing analysis. Therefore, we believe, from the point view of the mean field
theory, this BNN setting is not good for propagation of the information and
keep statistical information through deep neural networks. Table 1 shows the
differences of case 1 and case 2 which we will consider in the following sections.
Case 1 employs the Sign function for the forward propagation, while in Case
2 we use the B(z) as the binary function. In these experiments, we use the
same architecture, width 300 with 10 layers and batch size 64. DNN represents



the original fully-connected neural network and we can see the accuracy will be
best among these three after training several epochs because it keeps the total
information of the weight matrices while training.

epoch 1 2 3 4

Case 1 | 0.8361 | 0.9330 | 0.9234 | 0.9473
Case 2 | 0.9421 | 0.9516 | 0.9560 | 0.9609
DNN | 0.8990 | 0.9379 | 0.0.9526 | 0.9630

Table 1: Training accuracy with different parameters and training epochs.

3.2 Case 2

If the function is a hard tahn function defined in section 2, then we can go on
the analysis of our mean field theory. In this case,

Nl—l —y2
N, _1E[B(W!)?] = B(oy)?e™2 dy.
BBV = T2 | Bloy)edy
If o
O’: w (7)

VN

then the above integral converges o2, by the Dominated Convergence Theorem.
Then, when the weight initialization is

T20'2
Wl o~ 0, —v
bon (0572,

the covariance is simplified as
l -1 -1
Gop = 0 + 0L E[B(y; ' (a)) By (b)) (8)
Based on this equation, we can directly apply the methods and results in [3, 5] to
analyze the forward propagation of BNNs in this settings. Let ¢!, = ¢!, which is
l
the variance of the Gaussian Process. Let correlation function be szb =

Vda,’

Then the variance function is determined by the following recursion formula:

l 2 2 2
dh=ct+di [ B (z\/qa> D:, (9)
b R

where Dz is the standard Gaussian density %e’ﬁ/ 2dxz. We want know the
fixed point of the above recursion formula. If this recursion formula has a non-
trivial fixed point, then this network will eventually converge to this fixed point
and keep this variance through the propagation. Let g, be the fixed point of
the recursion formula (9). Then, if the inputs a and b have the same variance
qt = qg = q., then the correlation function has the following recursion formula:

do= (ot et [ BB DEDE). (o)

where u; = \/qkz1 and us = \/;£21 <cflbz1 +4/1— (0221)222) By the defini-

tion of g., we can see ¢ = 1 is a fixed point for the above recursion formula. Let



cd =1—¢, where szb is denoted by ¢!. Then we have the asymptotic recursion

formula of €
2
=€y, x1= 012”/ B’ (z\/qé) Dz. (11)
R

x1 = 1 is called the edge of chaos. This is because when x; < 1, then the
difference of one and correlation function ¢! will decrease exponentially to zero,
which means the correlation information of inputs a and b will disappear quickly
after going through several layers. This is a bad case that we would not want to
see. However, if x; > 1, then the difference would increase and become chaotic,
which is even a worse situation for forward propagation and will interfere the
training process dramatically. Therefore, keeping the parameter x; staying
one is a good choice to avoid the loss of some information of the input data.
Therefore, the existence of the fixed point ¢, and the restriction on y; give us
two equations for selecting the appropriate o,, and o} given the parameter r.

q*zag—kai}/B(z %)’ Dz (12)
R

and

) (13)

0«

7’2 \/% T
02:/7, Dz = ®( ) —@(—
w Vax

where ® is the distribution of the standard Gaussian random variable. Based
on equation (12) and equation (13), we can compute the fixed point g, or select
suitable (oy,,0p). As we can see in Figure 3, 4 and 5, the line represents the
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Figure 3: Phase diagram when r=0.4.

suitable (0., 03) to obtain the edge of chaos in our BNN architecture. Compar-
ing with these figures, it is easy to see when r goes to zero, which means the
function B(z) becomes a sign function, then the edge of chaos of oy, also goes
to zero. In other world, we need to choose the parameter o, smaller enough
when 7 is small to ensure the conservation of the forward propagation. For ex-
ample, when r» = 0.1, (04,05) = (0.1,0.0) is on the edge of chaos. Also, we can
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Figure 4: Phase diagram when r=0.7.
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Figure 5: Phase diagram when r=1.0.

use Hermitian expansion of the activation function, B(z), to get a mathemtical
restriction for x; = 1. To get a stable dynamic system near the ¢ = 1, we need
to have the following conditions:

0= /RB(Z) Dz and o, =0. (14)

Obviously, B(z) satisfies this condition and we only need to choose o, = 0
and corresponding o, on the edge of chaos. Therefore, for instance, (o, 0p) =
(0.1,0.0) is a good initialization according to our analysis. Besides, these con-
ditions indicate that binarized function is a little bit better that ReLU in this
sense. However, there may be other aspects indicating the advantages of ReLLU.



3.3 Gradients of Back Propagation

Considering a loss function F, we now study the back propagation. Our goal
is analyzing the back propagation to avoid the exploding and vanishing of the
gradients since these situations may ruin the upgrade of the learnable parameters
during training and make the learning process inefficient. We only update the
original real-valued weights and need to consider the recursion formula of 5,% =

gfl' This is because

OE _ OE 0B(W))
oWl ~ aB(WL) ow],

= JéB(yé'_l)B/(Wilj)- (15)

This computation shows that our architecture will never avoid the vanishing
and exploding of the gradients if we want r to go to zero asymptotically. In
other words, if 7 is too small, then either 8’?5‘ will be almost zero when ij
OE v

oW,
to zero. This conclusion is actually consistent with our experiments, which
shows when r is small, the training process is almost frozen and cannot move
in any direction along the loss manifold. However, when r = 1, which is the
setting for [13], then the learning speed is fast and the algorithm can quickly
find a local minimal point in the loss manifold since the gradients will not be
vanishing or exploding in this situation. When r = 1.0, the suitable parameters
are (o4, 0p) = (1.0,0.0), as we discussed before (see Figure 5). Table 2 shows the
training accuracy corresponding to the analysis of back propagation of gradients.
As we see, when r is small, the learning process is dead and no improvement at
all, while the learning accuracy is increasing and precise when 7 is not small.

is not close to zero, or will be huge for updating when Wilj is pretty close

epoch 1 2 3 4
r=0.1, (0, 0p) = (0.01,0.0) | 0.097400 | 0.097400 | 0.097400 | 0.097400
r=1.0, (o4, 0p) = (1.0,0.0) | 0.942100 | 0.951600 | 0.956000 | 0.960900

The recursion formula of g, := E[(6})?] = E[(B’(3}))?] Z]N:’T .M E[(B(W),))?]
can be simplified in different cases. If B(x) = Sign(x), then

q, = NipadiM o, (16)

which means variance of the gradient is not small and will explode through the
back propagation. However, if we use our definition of hard tanh function as
B(z), then

dq Nl qq X1,

which means the gradients is very stable along the back propagation.

Again, let us study the gradient 8%_ , based on the computation of B'(x) =
ij

21[_y,)(x). To make B'(W};) none zero, we need the probability

o Nipr (17)

TOw 0w

This can be made when the width is very large. Therefore, vanishing of the
gradients is not the actual case in our algorithm. But exploding may appear
when r is too small.

Z| <r)=PF(|

P(Wj| <r)=P(| Zl<r)~1.



4  Uniform Initialization

The reason we want include the uniform initialization is that in [13] they use
such Golort Uniform initialization. And the performance on the BNNs is good
enough to train a deep neural networks as fast as other architectures. Also, such
initialization has not been studied by the mean field theory before. Consider
the initialization Wilj ~ Uniform(—A, A). We want to find a suitable in our
mean field theory. Since we still set different entries of weight matrices are
independent, we can apply Central Limit Theorem again to get the Gaussian

Process in the forward propagation when the width goes to infinity. Notice that
V6 V6
\/N1+Nz71 ’ \/Nl“‘Nl—l
A should not be too large. Therefore, based on equation (6) and Case 2 in

section 3, we can get

Golort Uniform initialization is Uniform(— ), which shows

2N
3r2

A3,

ij

A
N E[B(W}.)?] = 2Nl_1/0 (z/r)dx =

In order to have the same equation as equation (8), we need

30721,7“2 1/3
a- ()" -

This parameter we got is a little bit different from Golort Uniform initializa-
tion and with lower order in the width. Using this setting, we can then apply
the mean field theory here to get a better estimation for A to obtain a good
forward propagation. Since the width is large, such A should be small. Then,
when considering the back propagation, in terms of equation (15), we can still
guarantee that the gradients will not vanish through the back propagation.
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Figure 6: Comparing.

The above figure of several curves compares the test accuracy and training
accuracy given different architectures and different kinds of initialization. As
we can see, the original DNN performs better than the BNN after training, but
DNN needs more time to train. For different kinds of initialization, the normal
initialization (which are the blue and yellow lines) is a little bit better that the
uniform initialization. Here, we use the same architecture. The width is 300
for each hidden layer and with 10 layers. The batch normalization is 64 with



batch normalization or dropout. There is one thing that we do not know how to
explain. The DNN actually spends much less time than the others. This ruins
the motivation of studying the BNNs in fact.

5 Dropout and Batch Normalization

We also consider the influences the dropout and batch normalization on the
information propagation using mean field theory. The idea comes from [5] and
a recent long paper [14], which we believe is a good reference for statistical deep
learning.

When we consider the dropout for each layer then equation (3), (4) and (5)
need to be changed:

N
yi=—-> BW})piB:") + 1, (19)

j=1

where pé» are independent Bernoulli random variables with parameter p. Then
the recursion formula of variance function will become

1
g, =02 + 70121)/ B? (z\/qu> Dz. (20)
P R

And the correlation function will be also changed. In this case, we do not have
the convergence of the correlation function to one. This is because, when we
input correlation function as one at the beginning, what we get will become

1
l
Cab_l_

—P 2 2
—L0% [ B ey DGa). (21)

which means the correlation function would be strictly less than one in this case.
Because of dropout, we do not have the critical point for training anymore.
Therefore, in some sense, dropout limits the depth to which the information
can be propagated in a deep neural network (see Figure 8 (b)).

For the batch normalization, the analysis based on mean field theory is
pretty hard and needs more computations so we still do not get the final re-
sults. However, [14] has already considered this problem and has some rigorous
computations. It is shown that the gradient signals grow exponentially in depth
and that these exploding gradients cannot be eliminated by tuning the initial
weight variances or by adjusting the nonlinear activation function. Indeed, batch
normalization itself is the cause of gradient explosion. Also, batch normalization
limits the depth to which the information can be propagated in a deep neural
network (see Figure 8 (a)) in some sense.

We did some experiments based on this theory, but the results do not match
with such theory. We believe we need more time training such neural networks
to get a more convincing result in such setting. Here, the four figures are
implemented with only one epoch in very deep neural networks so it takes
much time to get such figures. Figure 7 is to compare the DNNs and BNNs.
The y label is the number of hidden layers. The x label is the parameter
oy for normal initialization. For Figure 7 (a), we use pure fully-connected
binary neural networks with width 300 at each layer. For Figure 7 (b), we use

10
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Figure 7: Comparing BNNs and DNNs with different numbers of layer and
parameter o,,. Blue means low accuracy while white means high accuracy.
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Figure 8: Comparing the influence of Batch Normalization and Dropout with
different numbers of layer and parameter o,.

fully-connected deep neural networks with hard sigmoid function as activation
function. As we can see, BNN performs better than DNN in depth and in
terms of initialization. This because we only trianed one epoch. If we train
these networks long time, DNN should have better accuracy. But this difference
shows that BNN converges to its optimal states quicker that DNN because of
binarization in training process. For Figure 8, we use the same architecture and
initialization as Figure 7 (a) except the batch normalization and dropout. Figure
8 (a) shows a better performance if we add dropout and batch normalization
after each hidden layer. In Figure 8 (b), we only add one dropout at the first
hidden layer. This dropout actually has the performance when o, is not too
small. Comparing Figure 8 (a), (b) and Figure (a), it seems to show that batch
normalization improve the performance in depth and propagates the information
deeper in a BNN when o, is small, while the dropout limits such propagation
in depth.

The batch size of each experiment is 16. And all the experiments are based
on MNIST. In future, we may need other data for training and testing to make
the experiment more practical and convincing.
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