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1 Introduction

Hearing aids have functioned on one simple principle since their inception: amplify an incoming sound signal so that
is perceived as audible for the patient. More advanced hearing aids implement some signal processing in an attempt
to make the user perceive speech as ”standing out“ against background noise1, but these methods ignore a more
fundamental issue. When the body of an outer hair cell (OHC) rooted in the Basilar membrane (BM) experiences
a vibration, the stereo cilia extend and conduct vibration to the Tectorial membrane (TM) which then transmits
the vibrational signal to stereocilia extending from the inner hair cells (IHC). Conceptually, the OHCs function as a
nonlinear gain medium which can selectively amplify sound signals. A schematic diagram of these features is shown
in Figure 1.

Figure 1: A schematic diagram of the organ of Corti.

The fundamental problem is that when the OHCs are damaged, the loss of functional ”gain medium“ causes the
Basilar membrane and, in turn, the Tectorial membrane to mechanically respond differently to incoming sound waves.
An example of this response difference is displayed in Figure 2. A 250 Hz pure sine wave with duration 50 ms was
played for both the active and passive (damaged) cochlea models. Notice that the active response is a concentrated,
horizontal line in time in a region centered about ≈ 25 mm. In comparison, the passive Basilar membrane response
is dramatically broadened in space and centered about a region closer to ≈ 22 mm. The location of response in the
cochlea is frequency dependent. Higher frequencies will show a response closer to 0 mm on a plot like those in Figure
2, and lower frequencies will show a response closer to 30 mm. This shows that without a functional OHC ”gain
medium“, an incoming sound signal will produce a response that is broadened in space along the cochlea and shifted
to a higher central frequency.

The ultimate goal of this project is to design a sound filtering scheme which will alter the response of a passive
cochlea in order to cause it to respond as it would if it were active. In other words: how must the pure 250 Hz tone
be filtered such that the right half of Figure 2 matches the left half?

1Robyn M. Cox, Jani A. Johnson, and Jingjing Xu (2016). Impact of Hearing Aid Technology on Outcomes in Daily Life I: The
Patients’ Perspective. Vol. 37. 4. NIH Public Access, e224–e237. isbn: 0000000000000. doi: 10.1097/AUD.0000000000000277.
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Figure 2: The response of the Basilar membrane in an active cochlea compared to the Basilar membrane response
in a passive cochlea. Both the active and passive cochlea models were stimulated with a 250 Hz sine wave with a
duration of 50 ms.

2 Methods

2.1 The Cochlear Model

In order to carry out the analysis that will be described in the following sections, a comprehensive data set consisting
of active and passive cochlear responses to certain audio signals would be required. Even if such a data set existed, it
would be impossible to test the efficacy of a given filtering method as the time and money required to do the requisite
number of experiments would be substantial. Instead, I have chosen to use a computational model of Basilar and Tec-
torial membrane response in the time domain. The model used for this project is based on a Matlab code written by
Nobili and Mammano. This can be found at http://147.162.36.50/cochlea/cochleapages/download/cochmodels.htm.

The model first considers the Basilar membrane as a discrete collection of hydrodynamically-coupled oscillators
driven by a fluid-pressure input from the Stapes which is proportional to the time-varying amplitude of the incoming
sound wave. The equations for the Tectorial and Basilar membranes are coupled in that a displacement of the
Basilar membrane will case some displacement in the Tectorial membrane which can again influence the motion of
the Basilar membrane. The outer hair cells are modeled as a term which provides a localized oscillation undamping.
This undamping term is localized in that each point along the basilar and Tectorial membrane has an undamping
coefficient. Because this undamping coefficient is localized in space and the spatial response of the cochlea is
dependent on frequency, there is a frequency-dependent relation between the undamping term and the frequency of
the incoming sound wave. The only difference between the active cochlea model and the passive cochlea model is
that this undamping term is 0 for all space. A plot of the undamping coefficient for the active and passive cochlea is
displayed in Figure 3. Remembering that higher frequencies produce a response closer to 0 mm and lower frequencies
closer to 30 mm, this figure shows that the undamping coefficient is large for high frequencies and much smaller for
low frequencies. It is also possible to look at a cochlea that is ”partially“ passive in that the undamping coefficient
is somewhere between that of the active cochlea and passive cochlea.

2.2 Modifications to the cochlear model

I have had to make some significant changes to the original Matlab code to make it suitable for this project. The
original Matlab code allowed the user to load in a sound file and then interactively displayed the cochlear response.
However, it did not support saving the response data and was very inflexible with the way simulations were set up
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Figure 3: A comparison of the undamping coefficient between the active cochlea and the passive cochlea.

and called. Due to Matlab licensing issues and personal preference, I chose to port the simulation to python. Many of
the parameters for the underlying model were calculated once and than saved to MAT files for access later. Basically
my python version of the code reads in these pre-generated parameters and then reimplements the motion equations
these parameters are used in. I have restructured the code into a more user-friendly, object-oriented format which
was essential for my optimization techniques. An example for basic usage of the simulation code is as follows:

import pyCochlea
#set up the simulation object
simulationObject = pyCochlea.sim()

#create a 250Hz sine wave with a duration of 50 milliseconds
signal = pyCochlea.sinFunc(250,50e−3)

#initialize the simulation with the signal
simulationObject.initializeSignalFromArray(signal)

#run the active cochlea model
activeResponse = simulationObject.runActive()
activeResponse = simulationObject.runPassive()

#separate the BM and TM responses
BMActive = activeResponse["BMActive"]
TMActive = activeResponse["TMActive"]

BMPassive = activeResponse["BMPassive"]
TMPassive = activeResponse["TMPassive"]

2.3 Basis for the filtering mechanism

As seen in Figure 2, the passive response seems to ”bleed“ into higher frequency regions of the cochlea. This indicates
that instead of hearing a 250 Hz sine wave as a pure tone, the passive cochlea would hear this wave as a band of sound
between 250 Hz and ≈ 900 Hz. This diminished frequency acuity prevents a person from distinguishing different tones
and as frequencies blur together sound will become muffled and “muddy”. Therefore, the primary goal is to cancel
regions where this frequency bleed occurs in order to restore frequency acuity. Conceptually, it seems plausible that
if a higher frequency pitch is played simultaneously with the central frequency at some phase difference, the second
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Figure 4: This is a very simple example of one case of Equation 1. In this case, fc is 250 Hz, and a single extra sine
wave at 500 Hz is added with a 90◦ phase shift. The plot on the far right shows the combination of the two waves.

signal may cancel some of the bleed from the central frequency. In practice, it may take multiple different additional
frequencies to optimally cancel the frequency bleeding effect. To this end, a filter which is a linear combination of
pure sine waves will be defined as follows:

S(t) = A

(
sin(2πfct) +

N∑
i

bisin(2πfit+ φi)

)
(1)

In Equation 1, fc is the central frequency. In the example shown in Figure 2, fc would be 250 Hz. The summation
in the above equation is a linear combination of N sine waves with amplitude bi, frequency fi, and phase shift φi. A
is a final amplification factor that is designed to make the new signal exhibit the same response magnitude present
when the active cochlea is stimulated by an unmodified signal. A basic example of this filter is shown in Figure 4.
For a given central frequency fc, the goal is to find an optimal set of parameters (fi, φi, bi) which makes the passive
cochlea response as similar as possible to the active cochlear response to the unfiltered signal. Once the process for
finding these filter parameters is reliable, filter parameters can be found for a large number of fc frequencies and the
filter applied to a more complex sound signal.

2.4 Selecting a loss function

Perhaps the most difficult portion of this exercise is to formulate a loss function which sufficiently compares two
of the spatio-temporal matrices. To make the comparison easier, some preprocessing can be done on the response
generated by the computational model. Note the phase lead in the active response shown in Figure 2 compared to the
passive response. The fringed lines lean more to the right than in the passive response. This effect is not considered
to be important for the perception of sound. To remove any artifacts this phenomenon may cause while optimizing
filter parameters, optimization will be done over the response’s envelope. The envelope of the response is calculated
by taking the absolute value of the Hilbert transform in time of the response at each point along the membrane. The
Hilbert transform is done numerically using the implementation in scipy.signal. This preprocessing step preserves
important aspect of the matrices while discarding unimportant features.

In order to find the best filter parameters, a metric is needed to define the similarity. I decided to begin with a
simple loss function and add complexity as needed. The first attempt was a normal mean square error loss function:

MSE =
1

NM

N,M∑
i,j

(Aij − Pij)
2 (2)

This function turned out to be an unsatisfactory measure of similarity between my two matrices for a few reasons.
Crucially, it gives all regions of the response equal importance. This is undesirable because of the large number of
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elements which are either zero or near-zero in both matrices. From empirical observation, using a normal MSE
method tends to produce metric values which are quite small due to the small magnitude of the signal. When
attempting optimization over this metric with several different methods, the results from the optimizer don’t tend
to change much if at all from the given initial conditions. Normalizing the data before calculating MSE by dividing
both matrices by the maximum value present in the active response did not provide an appreciable difference in
optimization performance.

Conveniently, areas with larger response magnitude in the active simulation (left half of Figure 2) are more
important. Based on this fact, the second attempt at defining a loss function was to use a weighted version of the
MSE calculation. The weighted MSE was calculated using the active response envelope A and passive response
envelope P as:

WMSE =
1

N,M∑
i,j

wij

N,M∑
i,j

(wij (Aij − Pij))
2

(3)

This loss function has the advantage that it allows more important regions to be considered more heavily in the
comparison metric. The weight matrix for this method was generated based on thresholded values of the active
response. An example of this in python is:

weights = np.zeros like(activeEnvelope)
#Thresholds will be relative to the maximum response value.
maximumResponseValue = np.max(np.abs(activeEnvelope))
#Give pixels with zero magnitude a small amount of weight.
weights[np.where(active) >= 0.] = 0.05
#Weight based on different thresholds. Stronger responses get stronger weights.
weights[np.where(active) > 0.02∗maximumResponseValue] = 0.3
weights[np.where(active) > 0.25∗maximumResponseValue] = 1
weights[np.where(active) > 0.4∗maximumResponseValue] = 10

An example of the weights generated from the code above is shown in Figure 5. This loss function works
reasonably well in some situations, but it incurs a potentially large number of hyper-parameters. To generate the
weights, the user needs to decide several factors: how many thresholds to use, what the thresholds should be, and
how much weight to assign to each threshold. This method may eventually provide good results but it requires too
much heuristic analysis to get the weight generation parameters right.

Next, I have implemented a Dice coefficient loss function. The dice coefficient loss seems to be used often in
image segmentation and comparison tasks as a measure of the similarity between two images. I have seen this metric
used as the amount of overlap between two images. The formulation of dice coefficient loss is:

LD = 1− 2|A · P |
|A|2 + |P |2

(4)

This metric shows quite a bit of promise as it heuristically maintains some of the benefit of the weighted mean
square error method without requiring nearly as much user input. I have only recently begun examining optimization
performance of this loss function with my data, but preliminary results are promising.

Another loss function possibility I’ve explored is the log-cosh loss function:

LLC =
∑

log (cosh (A− P )) (5)

This loss function seems to behave similarly to MSE while being less sensitive to outliers.
My next steps in this area are to continue evaluation of the dice coefficient loss function and log-cosh loss function,

and to perhaps try another overlap-based loss function like Jaccard loss.

2.5 Optimization

In my project proposal and midterm report, I discussed using Dakota for optimization. Dakota is a freely-available
optimization package from Sandia which has a very wide optimization, parameter study, and experimental design
capability. After using this package for some time, it became apparent that similar functionality is available in python.
I have shifted to using scipy.optimize for loss function minimization. Scipy’s optimization package includes several
optimization methods. I have tried using several of these optimization methods with some success. My primary
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Figure 5: An example of weights generated from the active Basilar membrane response
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Figure 6: These plots show the envelope of the Basilar membrane response from Figure 2.
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choice for optimization has been the conjugate gradient method which is a well-known method for optimization
and is very applicable for this situation. I have been using numerical gradients rather than analytical gradients
for all of my possible loss functions. I have had to spend a significant amount of time this semester formulating
the optimization problem and have not yet been able to give the optimization step the amount of attention that
it deserves. As my work on this project will be ongoing beyond the end of this semester, my next primary goal is
to formulate analytical gradients for each of my loss functions to avoid any artifacts that may be coming from the
numerical gradient calculation in Scipy.

One important note is that I am not scaling the parameters that I’m optimizing over. I expect that doing so
would give some benefit in convergence speed and accuracy. However, because these parameters are being directly
used in a simulation for each optimization step, there is some difficulty in making sure that parameters are scaled
for optimization, un-scaled for model evaluation, and then re-scaled again. This is one direction that I will take in
the coming weeks.

Recall the filter expression:

S(t) = A

(
sin(2πfct) +

N∑
i

bi sin(2πfit+ φi))

)
One modification needs to be made before optimizing over this equation. As discussed earlier, the passive cochlea

shows some shift toward higher-frequency regions of the cochlea. I will add a parameter to compensate for this:

S(t) = A

(
sin(2π(fc + ∆f)) +

N∑
i

bi sin(2πfit+ φi)

)
Because N may become large, it’s advantageous to describe a surrogate function to describe the amplitudes

of the higher-frequency additions bi. The goal of these additions is to cancel the effects of the passive cochlear
response broadening. As seen on the right half of Figure 2, the region of high frequency response “bleed” decreases
in intensity as it gets further away from the central frequency fc. Because of this, I have added a functional form for
the amplitudes bi:

bi(fi; τ) = exp

(
− (fi − fc)

τ

)
(6)

A similar problem exists for the phase shift of each frequency φi. In the coming weeks I will either formulate a
similar surrogate function for these values or allow my optimizer to optimize a φi value for each frequency fi. For
now, the same value for φi is used for all frequencies.

I have implemented a python code which accepts parameters for the smallest and largest values that fi should
take, the number of frequencies to generate N , the phase shift to apply to these frequencies phii, as well as the
central frequency fc and frequency shift ∆f . I am optimizing the loss function according to the following model
parameters: fi−max, fi−min, A, ∆f , and τ .

Ideally, the result of this optimization would be a signal carrying the central frequency which has been shifted
such that the response is at the proper place on the cochlea spatially along with a complex of higher-frequency signals
which will cancel out the frequency “bleed” effect seen in Figures 2 and 6.
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3 Results

In practice, it is useful to consider a cochlea that is only partially passive rather than an entirely passive cochlea.
For this case, the undamping parameter displayed in Figure 3 is multiplied by a constant to lower it compared to
the active cochlea undamping parameter without making it completely zero. This is representative of a case where
the OHCs acting as a gain medium aren’t producing as much gain as they should be, but are not totally dead. An
example of such an undamping parameter is shown in Figure 7. I have implemented this functionality by adding a
runPartiallyPassive class to the pyCochlea simulation class. This method accepts a single parameter which is the
multiplier used for the undamping coefficient. A usage example is below:

#set up and initialize the simulation object
simObj = pyCochlea.sim()
signal = pyCochlea.sinFunc(250,50e−3)
simObj.initializeSignalFromArray(signal)

#run the partially passive simulation with an undamping multiplier of 0.5 and
extract the BM Partially Passive response

BMPPassive = simObj.runPartiallyPassive(0.5)["BMPPassive"]
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Figure 7: Undamping coefficient for a partially passive cochlea compared to those for an active cochlea and fully
passive cochlea.

For a given optimization attempt, I will create a class object in python which initializes the required active
response envelope and the passive response to an unfiltered signal for comparison. This class is responsible for
setting up the simulation object used for each iteration of the optimizer as well as calculating and returning the
value of the loss function to the optimizer. An example of such a script is included as an appendix to this document.
Although I haven’t yet gotten the result I’m looking for, I have found some interesting results.

Figure 8 shows one such interesting result. In this image, it’s clear that there is some potential for this model
to eliminate the frequency bleed effect in the passive cochlea. The large intensity spike is an artifact that may be
caused by the way in which the tone complex is generated. More exploration needs to be done to find the source of
this artifact and then to find a way to eliminate it.

Figure 9 is another result which shows some promise that this method may be able to reduce the magnitude of
frequency bleed while maintaining an acceptable response magnitude in the signal region.
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Figure 8: The figure on the left hand side is the envelope of the partially passive Basilar membrane (0.5) response
to an unfiltered signal. The right hand side is the same Basilar membrane’s response to a filtered signal. This result
shows promise that this method will be able to cancel the “frequency bleed” in the passive cochlea model. The
large intensity spike in this image is an unfortunate artifact. The optimized parameters are: A = 3.55, τ = 132.24,
∆f = −16.4, fi−min = 229.5, fi−max = 571.6. 10 frequencies are used in the tone complex.
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Figure 9: The plot on the left is the partially passive BM response to an unfiltered signal, and the figure on the right
is the response to a filtered signal. This result shows that for short time at the beginning of the response, there is
some reduction in the frequency bleed while maintaining reasonable signal in the signal region. This result is not yet
optimal, but it is a promising preliminary result. The optimized parameters are: A = 6.12, τ = 16.45, ∆f = −18.96,
fi−min = 238.8, and fi−max = 510.14.
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4 Discussion

The results so far are promising, but there is a large number of other things that I will attempt in the coming weeks.
As mentioned in the section on optimization, I would like to try scaling the parameters that are optimized over.
Some care needs to be taken to ensure this is done in a way that does not take away from the physical meaning of
the model parameters when used in the simulation.

Another factor that may be quite important is that when multiple frequencies are used in the filtering expression,
the total magnitude of the signal may grow to a degree that the amplification parameter A is relatively meaningless
in the context of comparing it between different optimization runs. The total signal should be normalized such that
the maximum amplitude of the resulting waveform is unity before the amplification parameter is applied. As the
amplitudes bi are less than one by definition from Equation 6, these amplitudes will be relative to the signal carrying
the central frequency and their proportions will be maintained as the whole signal is normalized. Doing this will
make the amplification parameter A more meaningful.

Also as discussed in the optimization section, I would like to implement the use of analytical gradients for all loss
functions to increase optimization convergence speed and accuracy. This will not be a difficult addition to make, but
I have not had time to do so as of the writing of this report because of time spent on formulating the optimization
problem.

Once the method discussed in this report is reliable for a single frequency fc, it will be trivial to automate
the training of filter parameters for a broad range of frequencies. When applied as an audio filtering mechanism
in a hearing aid, this has the potential to dramatically improve a hearing-impaired patient’s frequency acuity and
therefore their ability to understand speech.

5 Closing remarks

In closing, I would like to mention a few things related more to my experience in this course than the subject of
this report. My undergraduate degree is in Physics from a different university. As a second-semester Biomedical
Engineering Master’s student, I decided to enroll in this class because the application of machine learning methods
to biomedical data sets is a research area that I am very much interested in. Before taking this course I had taken
no courses in probability theory, and I had never trained a machine learning model. In combination with that, I had
very limited knowledge about the biology of hearing before beginning this project. Over the course of this project
I’ve learned a lot about the biology of hearing and even more about how machine learning models may possibly be
applied to some biomedical data sets. I have also gained some understanding and appreciation for the mathematics
that make sparse learning models work. Although I feel that I have much left to learn, I have made significant
progress from where I was when I started this class. This course has reaffirmed my interest in the application of
machine learning methods to biomedical data sets and I am excited to apply the knowledge I gained in this course
to other biomedical problems in the future.
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A Code

This project includes too much code to include all of it in this document. I have included some relevent scripts in
this appendix. The original Matlab and my modified Python versions of the cochlear model are available under the
finalProject/code folder of my GitHub repository.

A.1 Optimization script

This script is an example of how I am carrying out the optimization for this project. This file is also available on
the GitHub repository.

#!/usr/bin/env python
# −∗− coding: utf−8 −∗−

import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
import pyCochlea

class optClass():
def init (self):

#The central frequency and maximum simulation time are defined here
self.centralF = 250
self.tMax = 50e−3

#initialize a simulation object to get active cochlea results
activeSim = pyCochlea.sim()

#Initialize a pure sine wave at the centralF for the duration of the
simulation

activeSig = pyCochlea.sinFunc(self.centralF,self.tMax)

#initialize the simulation with this signal
activeSim.initializeSignalFromArray(activeSig)

#Calculate the active response, extract the BM response, make the envelope ,
and

#calculate the maximum value for the envelope.
self.activeResp = np.array(activeSim.runActive()["BMActive"])[:,:,0].T
self.activeEnvelope = pyCochlea.makeEnvelope(self.activeResp)
self.activeEnvMax = np.max(self.activeEnvelope)

#Initialize some sane defaults for thresholds used to generate the weights
matrix

#for the weighted MSE loss function
self.weightsParams = [[0.01,0.1],

[0.15,0.25],
[0.3,1],
[0.5,3]]

#Generate the weights matrix
self.weights = pyCochlea.genWeights(self.activeEnvelope ,self.weightsParams)

#Sum the weights. Used when calculating WMSE. Doing it here prevents it
being done

#for every iteration
self.weightsSum = np.sum(self.weights)

#Calculate the weighted active envelope
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self.weightedActiveEnvelope = self.weights∗self.activeEnvelope

#If this is set to True, a plot will be produced each time the
singleIteration function is run.

#Leave it set to False while optimizing , but it’s useful to set this to True
to see optimization results

self.plot = False

#Calculate the passive response to an unfiltered signal. Useful for
comparison to passive cochlear response

#to filtered signal
passiveSim = pyCochlea.sim()
passiveSim.initializeSignalFromArray(activeSig)
#Note using a partially passive model with a multiplier of 0.5
passiveResp = np.array(passiveSim.runPartiallyPassive(0.5)["BMPPassive"])
[:,:,0].T

self.passiveEnvelope = pyCochlea.makeEnvelope(passiveResp)

def singleIteration(self,x):
#scipy.optimize expects all parameters in a single vector. Split them out

for convenience
ampl = x[0]
sigma = x[1]
df = x[2]
start = x[3]
stop = x[4]

#initialize an object for the passive cochlea simulation
passiveSim = pyCochlea.sim()

#Initialize an object for creating the tone complex. This will return the
tone complex added to the

#signal carrying the central frequency
passiveCplxgen = pyCochlea.toneComplex(self.centralF+df,sigma,start,stop,10,
self.tMax,phase=90)

#Apply the amplification factor to the tone complex
passiveCplx = ampl∗passiveCplxgen.makeSoundComplex()

#Initialize the model with the signal and extract the BM Partially Passive
response

passiveSim.initializeSignalFromArray(passiveCplx)
passiveResp = np.array(passiveSim.runPartiallyPassive(0.5)["BMPPassive"])
[:,:,0].T

passiveEnvelope = pyCochlea.makeEnvelope(passiveResp)

#The next few lines allow me to change which loss function is being used.
Uncomment only one of these lines

#to switch.

#Weighted MSE
# loss = 1/self.weightsSum∗(np.sum((self.weightedActiveEnvelope−self.weights

∗passiveEnvelope)∗∗2))

#dice loss
loss = self.dice loss(self.activeEnvelope ,passiveEnvelope)

#log−cosh loss

12



# loss = self.logcosh(self.activeEnvelope ,passiveEnvelope)

#Weighted MSE with the active and passive envelopes normalized such that the
active envelope has a peak intensity of 1

# loss = 1/self.weightedActiveEnvelope.size∗(np.sum((self.activeEnvelope/np.
max(np.abs(self.activeEnvelope))−self.passiveEnvelope/np.max(np.abs(self
.activeEnvelope)))∗∗2))

#Create a plot if the plot flag is enabled
if(self.plot):

plt.figure(figsize=(8,4))
plt.subplot(121)
plt.imshow(self.passiveEnvelope ,origin=’lower’,aspect=’auto’,extent

=[0,50,0,30])
plt.xlabel("Time [ms]")
plt.ylabel("Distance along cochlea [mm]")
plt.colorbar()
plt.title("Unfiltered Signal")
plt.subplot(122)
plt.imshow(passiveEnvelope ,origin=’lower’,aspect=’auto’,extent

=[0,50,0,30])
plt.xlabel("Time [ms]")
plt.ylabel("Distance along cochlea [mm]")
plt.colorbar()
# plt.clim([0,0.2])
plt.title("Filtered Signal")
plt.tight layout()
plt.show()

#return the loss function value to the optimizer
return loss

#If the user chooses to select a different set of weight parameters after this
class is initialized ,

#this function must be used to make all of the relevent updates
def setWeightsParams(self,params):

self.weightsParams = params
self.weights = pyCochlea.genWeights(self.activeEnvelope ,self.weightsParams)
self.weightedActiveEnvelope = self.weights∗self.activeEnvelope
self.weightsSum = np.sum(self.weights)

#Calculate the dice coefficient loss
def dice loss(self,y true , y pred):

y true f = y true.flatten()
y pred f = y pred.flatten()

intersection = np.sum(y true f ∗y pred f)
return 1−(2.∗ intersection)/(np.sum(y true∗y true f)+np.sum(y pred f ∗

y pred f))

#calculate the logcosh loss
def logcosh(self,true, pred):

loss = np.log(np.cosh(pred − true))
return np.sum(loss)
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if name == ’ main ’:
cochOpt = optClass()

#An example of setting weight generation parameters
# weightParams = [[0.00,0.05],[0.02,1],[0.09,4],[0.4,14]]
# cochOpt.setWeightsParams(weightParams)

#set some initial conditions
x0 = [6,100,−5,250,500]

# x0 = [ 4.13474444, 11.42116341, −13.2452323 , 234.28161424, 500]

#Use the scipy.optimize.minimize function to optimize over the initial
conditions

# optimizer = minimize(a.singleIteration ,x0,method=’cg’,options={’maxiter’:
1000})

optimizer = minimize(a.singleIteration ,x0)

#After a run, print output from the optimizer. This object could also be pickled
and

#saved for later
print(optimizer)

#After optimization , set the plot flag to true
cochOpt.plot = True

#Run a single iteration with the final results from the optimizer and plot
#the results
cochOpt.singleIteration(optimizer.x)
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A.2 Sound complex generation

A second relevent piece of code is the one which I’m using to generate the sound complex. I have included it in this
appendix, but it is also available under the finalProject/code/pyCochlea folder of my GitHub repository.

#!/usr/bin/env python
# −∗− coding: utf−8 −∗−

import numpy as np

’’’
This class implements a complex of overtones that should be added to a central

frequency.
It will produce a tone complex where the amplitude of the tones are controlled by a

gaussian
or decaying exponential function.
’’’

class toneComplex:
def init (self,centralF ,tau,start,stop,N,tMax,dt=(1/44.1e3),phase=90):

#Define all filter parameters
self.centralF = centralF
self.tau = tau
self.N = N

self.start = start
self.stop = stop
df = (stop−start)/(N−1)
#create a vector of frequencies which will be in the tone complex
self.fVec = np.array([start+i∗df for i in range(N)])

#Set up a phase vector. The phase for all tones in the complex are the same
for now

#(except the central frequency which has phase 0)
self.phaseVec = np.zeros(N+1)
self.phaseVec[1:] = phase

#Create a data structure which will hold all the signals that are generated.
Useful for analysis later

tN = int(np.ceil(tMax/dt)+1)
self.timeVec = np.array([i∗dt for i in range(tN)])
self.signalVec = np.zeros([N+1,tN])
self.signalVec[0] = self.makeSingleSineWave(centralF,phi=0)

#This is a functional form with a sloping start which prevents some
#adverse effects in the model.
to = 500/44.1e3
a = 200
self.form = 0.5∗(np.tanh(a∗(self.timeVec−to))+1)

’’’
Inputs:
− f: frequency for which to get intensity multiplier

outputs:
− relAmpl: amplitude relative to the central frequency

There are two possibilities in this script: a decaying exponential , and a
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gaussian. The decaying exponential seems
to work better.
’’’
def intensityCurve(self,f):

centralF = self.centralF
tau = self.tau
# return np.exp(−(f−centralF)∗∗2/(tau∗∗2))
return np.exp(−(f−centralF)/tau)

’’’
This equation generates a single sine wave based on input parameters. This will
be run in a loop.

’’’
def makeSingleSineWave(self,f,phi=0):

ampl = self.intensityCurve(f)
phi = np.deg2rad(phi)

sineWave = ampl∗np.sin(2∗np.pi∗f∗self.timeVec+phi)
return sineWave

def makeSoundComplex(self):
#Loop through the frequency vector to build the signals that will be

combined into the final signal
for i,f in enumerate(self.fVec):

self.signalVec[i+1] = self.makeSingleSineWave(f,self.phaseVec[i+1])

#Combine the signals, multiply it by the gently sloping form, and return the
final signal.

self.soundComplex = self.form∗np.sum(self.signalVec ,axis=0)
return self.soundComplex

’’’
A brief usage example of the overtone complex generator.
’’’
if name == ’ main ’:

a = toneComplex(centralF = 250,tau=120,start=250,stop=400,N=100,tMax=50e−3,phase
=89)

signal = a.makeSoundComplex()

import matplotlib.pyplot as plt
plt.plot(a.timeVec, signal)
plt.show()
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