
Addressing issues with training deep networks
Eddie Gil 922002267

Abstract: Recent work towards improving Convolutional Neural Networks (CNNs) has focused on
adding network depth and complexity in nodal connectivity. Very deep networks however, still suffer
from training difficulties due to problems with unstable gradients. I hypothesize that this largely stems
from the way errors are back-propagated through the networks. In order to test whether or not adding
simple connectivity pathways aid in trainability and overall performance, I trained neural networks of
various depths and varying number of kernels on CIFAR-10 and compared their testing accuracy and
learning curves. The results obtained in this work show that concatenating down sampled outputs from
earlier layers in the network with the ones meant to be passed to fully connected layers does improve
trainability and overall testing accuracy. Increased network depth can also be added using this techique,
however the advantages gained in doing so were not worth the increase in depth. Thus, I conclude that
a well designed network of a certain depth can offer more performance advantages over arbitrarily deep
networks.

Introduction and Motivation: There has been a push for the use of deeper networks with more
complicated architectures in the past few years. CNNs with impressive performance on the COCO,
ILSVRC, and CIFAR-1001,2,3 benchmarks have had network depths greater than 12 layers, and in some
cases have high complexity in their nodal connectivity. Networks like VGG16, VGG19, and ResNet
have been introduced boasting 16, 19, and 150 layers respectively and perform exceedingly well on
those benchmarks4,5. Complexity in layer connectivity has also been explored by numerous groups
developing networks like Dense Nets, networks with LSTM based gates, and Highway way nets6,7,8.
However, there may be some redundancy in connectivity and feature map similarity, increasing the
memory costs for these networks.

It is important to note that with added network depth the difficulty of training networks increases. This
is thought to be due to exploding and vanishing gradients. While batch normalization may help to some
extent since it keeps firining of each neuron in a confined range, the true issue lies in use of the chain
rule in the back propogation algorithm. For simplification we can constrain our analysis to a neural
network using a categorical cross entropy loss function ,

C (y⃗ , y⃗ ')=−∑ y i log (y ' i) Eq (1).

where y is a one hot represented vector describing a sample’s class label, and y’ is a vector describing
the predicted label. The output y’ can be written as a function of the weights and biases (w, b) in the
last layer (L) that is

y '=softmax (w z+b)Eq (2).
The activation of some layer z in this work is given by

 zL=ReLU (wL− 1 zL −1+bL− 1) Eq(3).
In order to train the network the goal is to minimize the cost with respect to the training weights and
biases in the network, that is

minw, bC (y⃗ , y⃗ ' (w ,b))Eq (4).
To accomplish this gradient descent is performed with backpropagation. For the final layer that means
the partial derivative with respect to the weights of the final layer can be found using the chain rule,

dC
dW L

=
dC
dy '

dy '
dW L

Eq(5).

In the layers prior to the final layer, the chain rule is again applied depending on the connectivity ,
however, it boils down to something of the form

dC
dW l − n

=
dC
dy '

dy '
dW l

dW l

dW l −1

dW l − 1

dW l − 2

...
dW l − (n −1)

dW l − n

Eq(6).

Where l is the lth layer and n is the number of layers before it. That being said the partial derivatives
are actually taken more rigorously with respect to the activation as well, adding even more
intermediate steps. However, it is clear that the use of the chain rule leads to cumulative multiplication
in order to backpropogate errors in these networks. When implementing in Keras and Tensorflow, these
partial derivatives are determined using Reverse-Mode Autodifferentiation9, which first creates a graph
based on the connections between each layer in a given network, then performs the chain rule to find
the derivative of the cost with respect to the weights and biases in each layer. Taking these concepts
into account allows us to consider that the reason that connectivity patterns in Dense Units and shortcut
paths in Residual Units is that the chain rule for earlier layers is shortened making, the cumulative
product that propagates the error back to them more stable. That being said, Residual units only
consider skipping 1 to a few layers, and although every layer in a dense unit takes into account all
previous layers, it is constrained to that particular Dense block. This lead me to wonder if more simple
pathways could be used to achieve the same effect.

Methodology: Performance on CIFAR-10 was used to evaluate networks using various depths,
numbers of kernels, and connectivity patterns. Images loaded from the CIFAR-10 data were reshaped
so that they had the shape N images x 32 rows x 32 columns x 3 color channels, where N is the number
of images in a batch. Doing so allowed the entire training and testing set to be loaded into the memory.
The images were scaled to be between 0 and 1 by dividing by 255. All networks trained in this project
were trained using Keras with TensorFlow in the backend. Categorical Cross Entropy was used as the
loss function, Stochastic Gradient Descent with a learning rate of 0.01, and batch size of 500 was used
to train each network for 200 epochs. Training was done using a NVIDIA GTX 1060 graphics card. For
all networks, 3x3 convolutional kernels were used with a stride of 1, and zero padded so that they had
the same input size as output. 3 maxpooling layers were used in each network using a 2x2 pools size
so that the output of any max pooling step had half the number of rows and columns as its input. Batch
Normalization was used after each of the 3 max pooling steps. For each network, after the final
maxpooling step, the output was flattened and fed to a fully connected layer using 2048 units, then
1024 units, then 10 units. The 2048, and 1024 unit layers, used 50% dropout. All layers were activated
using ReLUs except for the final 10 unit layer. For that, softmax activation was used. Below are more
details about the various networks

Baseline Variant: This network was restricted to the basic feedforward architecture. Variants using 12,
69, and 99 layers were implemented. A max pooling step was placed every 4, 23, and 33 layers for the
12,69, and 99 layer networks respectively. I trained copies of the 12 layer network using 3 kernels per
layer ,16 kernels per layer, and 64 kernels per layer, to use as a baseline of performance. Due to
memory constraints, I was only able to train versions using 3 kernels in the 69, and 99 layer variants.
The connectivity map for this network is shown in Figure 1.

Layer Output Concatenation: This network contains a basic feed forward path. Additionally, the
output from every kernel in each layer of the network is maxpooled so that it can be concatenated with
the output from the third major maxpooling layer. Variants using, 12, 69, and 120 layers were trained.
The same rules for kernels were followed for this variant as in the baseline. The same rules for
maxpooling and for the number of kernels from before were followed here as well. A map for the 12
layer version can be seen in Figure 2.

Layer Output Summation: This is the same as in the the concatenation variant however the layer
outputs were summed instead of concatenated in the final step. While the concatenation pathway adds a
path to the end of the network, it increases the number of outputs in the intermediate steps of the
network. Summing instead of concatenation means only 1 additional map is fed to the fully connected
stages. Variants using, 12, 69, and 120 layers were trained. The same rules for kernels were followed
for this variant as in the baseline. The same rules for maxpooling and for the number of kernels from
before were followed here as well. The network layout is shown in Figure 3.

Figure 1. Basic Feed forward network. Each group of 3 squares represents a convolution, the large
rectangles marked MP are max pooling layers. The rectangle marked FC represents the fully connected
stages of the network and the Softmax rectangle is the softmax layer.

Figure 2. Concatenation variant. Each convolutional layer’s output is max pooled and
immediately concatenated with the channels for the output that gets fed into the fully connected
stages. The abbreviation CCT stands for concatenation.

Results: Table 1 shows the final training and testing accuracy for each model variant at different
depths using a different numbers of kernels. From the Table, we can see that generally, the models
using 16 kernels seem to offer the best performance, in that they have some overfitting, but better
testing accuracy than networks using only 3 kernels. The best testing accuracy was obtained by the
Concatenation variant using 16 kernels, and 12 layers. The 64 kernel variant on that group did have
better testing accuracy but overfit significantly. One thing to point out is that if we compare across
groups using the same number of kernels, the concatenation networks outperform the summing
networks which outperform the baseline. However, when we compare the best network in each
category there is not much difference between the techniques.

Figure 3: This is the same as the concatenation network, however the layer outputs are summed
instead of being concatenated. While the concatenation network increases the final number of layers,
this one reduces them while still adding a path to the end of the network.

Architecture Number of Layers Number of Kernels End Training Accuracy End Testing Accuracy
Baseline 12 3 0.498 0.485

16 0.801 0.676
64 0.999 0.64

69 3 0.101 0.099

Concatenation net 12 3 0.595 0.588
16 0.834 0.686
64 0.999 0.74

69 3 0.647 0.625
69 16 0.932 0.74

120 3 0.782 0.666

Summing net 12 3 0.519 0.511
16 0.751 0.668
64 1 0.714

69 3 0.499 0.499

Table 1: End Training and Testing Accuracy for network variants

We can get a better feel for this concept from the Training and Testing accuracy plots shown in Figure
4. Notice that the testing accuracy when adding kernels to the networks doesn’t improve all that much.
Across each of the connectivity variants, the testing accuracy also seem to converge to the same point.
This suggests that if I had trained multiple initializations for each architecture and gotten a mean and
standard deviation of the best models from each group there may not have been significant differences
in performance outcomes. One key observation is that as the number of training kernels increases, in
every case overfitting increases. Additionally, by observing the points where training and testing loss
diverge we can see that increases in the number of kernels shorten the number of epochs necessary to
obtain a decent model. However, for instances beyond the scope of this project where we need to train
for a long time, restricting the number of kernels to a small number may be more desirable.

Examination of the training losses in Figure 5, helps to confirm that the networks with more kernels
did in fact minimize the training loss more quickly than others. There also doesn’t seem to be much of
a difference between the three techniques as the number of kernels increases, however, when the
number of kernels picked is in a kind of middle ground (16 kernels in this case) the Concatenation
technique works best to minimize the training loss without sending the losses to zero. Meaning that
additional training time could yield additional improvement in that case.

Figure 4. Training and Testing Accuracy for each of the model variants. From top to bottom each row
is the Baseline model, followed by the Concatenation model, followed by the summing model. Each
column from left to right is the 3 kernel variants, 16 kernels, then 64 kernel variants.

In Figure 6, we can see the effect of increasing layer depth on the testing accuracy for the
concatenation network. In Table 1, we saw that increasing the network depth in a basic feedforward
network offers some improvements in final testing accuracy, however after some depth, the network
becomes untrainable. For the Concatenation and summation variants we see that is not the case.
However, Figures 6 and 7 shows that while the deeper networks become trainable, the added depth
does not linearly improve the testing accuracy of the networks.

Figure 5.Training loss for the different network varaints.

Figure 6. Testing accuracy as concatenation network depth increases for the Concatenation variant.
Baseline with 69 layers is shown as well

Conclusions: The biggest impact from variation in the models tested came from the number of kernels
selected per layer. All of the results suggest that increasing the number of kernels increases the testing
accuracy of the networks developed at the cost of increasing the amount of overfitting. This suggest
that it may be possible to tune networks for their optimal number of kernels in an algorithmic way. This
trend seems to hold true when the number of layers increases. That is, for the concatenation variants, as
the number of layers increased from 12 to 69 to 120 layers, the split between training and test accuracy
was minimal for the 3 kernel variants. When increasing from 3 to 6 kernels, the testing accuracy
improved at the cost of overfitting. Additionally, in this highly constrained scenario we can see that
added depth by itself, does not guarantee performance improvements over more shallow networks.
Using an optimal number of kernels does allow for performance boosting, and in the event that more
network depth is needed, simple fixes like adding a pathway between early layers and the later stages
can allow end to end training.

To improve the quality of this work it could be useful to train multiple initializations of each network
and get a mean and standard deviation for training and testing accuracy endpoints. Although training
went on for long enough to show the networks converged to some end point it would allow us to verify
these results with more certainty. It would also be good to test how the concatenation and summation
networks compare against variants with the same number of layers but more max pooling stages.
Assuming we had inputs with size of 128x128x3 would addition of 2 more max pooling stages help
under the same constraints on number of layer and number of kernels.

More importantly, these results suggest that there may exist an algorithmic way for designing a network
by tuning the number of kernels, network depth, and connectivity between nodes in the network.
ResNets and Dense Nets started the discussion by allowing for the flow of information between blocks
in the network, this work continues it by showing that the flow could take much larger steps. I think the
end point is that there may be a more graphical way to explore the flow of information in networks. For
future research it would be interesting to see how the use of generative approaches like Evolutionary
Algorithms could tune the above parameters, while testing different connectivity mappings to design a
much better network than what has been formulated here.

Figure 7: Training Loss versus epoch as network depth increases for 3 kernel per layer networks.
Baseline with 69 layers is shown as well.

References:
[1] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollr, P., and Zitnick, C. L.,

“Microsoft coco: Common objects in context,” Computer Vision ECCV 2014 Lecture Notes in
Computer Science, 740755 (2014).

[2] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A.,
Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L., “ImageNet Large Scale Visual Recognition
Challenge,” International Journal of Computer Vision (IJCV) 115(3), 211–252 (2015).

[3] Krizhevsky, A., “Learning multiple layers of features from tiny images,” tech. Rep. (2009).
[4] Simonyan, K. and Zisserman, A., “Very deep convolutional networks for large-scale image

recognition,” CoRR abs/1409.1556 (2014).
[5] He, K., Zhang, X., Ren, S., and Sun, J., “Deep residual learning for image recognition,” 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR) (2016).
[6] Huang, G., Liu, Z., Maaten, L. V. D., and Weinberger, K. Q., “Densely connected convolutional

networks,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017).
[7] Srivastava, Rupesh Kumar, et al. Training Very Deep Networks. 2015. EBSCOhost,

ezproxy.library.tamu.edu/login?url=http://search.ebscohost.com/login.aspx?
direct=true&db=edsarx&AN=edsarx.1507.06228&site=eds-live.

[8] Huang ,G., Chen, D., Li, T., Wu, F., van der Maaten, L., and Weinberger,. K. “Multi-scale Dense
Networks for Resource Efficient Image Classification” 2018 ICLR conference paper (2018).

[9] Géron, Aurélien. Hands-on Machine Learning with Scikit-Learn and TensorFlow : Concepts, Tools,
and Techniques to Build Intelligent Systems. First Edition. Aurélien Géron. Sebastopol, CA :
O’Reilly Media, 2017., 2017. EBSCOhost,
ezproxy.library.tamu.edu/login?url=http://search.ebscohost.com/login.aspx?
direct=true&db=cat03318a&AN=tamug.5743869&site=eds-live.

http://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1507.06228&site=eds-live
http://search.ebscohost.com/login.aspx?direct=true&db=edsarx&AN=edsarx.1507.06228&site=eds-live

