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Asking the Right Question Is Critical

Parallel postulate Euclid (circa BC 300) Eugenio Beltrami (1985-1900)

Euclid’s 5th postulate (parallel postulate).

• How can we prove the parallel postulates using ... ?

Unsolvable. Unsolved for thousands of years.

• How can we prove the parallel postulates using ... ?

Solvable. The answer is “No” (Beltrami)
Image sources: Painting by Justus of Ghent; public domain photo. 2



Today’s Topic

• Re-evaluating current questions in (computational)

neuroscience.

• Showing how slight change in perspective can lead to new

insights.
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Background: Current Questions in

Neuroscience
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10 Unsolved Questions of Neuroscience
1. How is information coded in neural activity?

2. How are memories stored and retrieved?

3. What does the baseline activity in the brain represent?

4. How do brains simulate the future?

5. What are emotions?

6. What is intelligence?

7. How is time represented in the brain?

8. Why do brains sleep and dream?

9. How do the specialized systems of the brain integrate with one another?

10. What is consciousness?

Eagleman (2007) 5



23 Problems in Systems Neuroscience
1. Shall We Even Understand the Fly’s Brain?

2. Can We Understand the Action of Brains in Natural Environments?

3. Hemisphere Dominance of Brain Function–Which Functions Are

Lateralized and Why?

4. What Is the Function of the Thalamus?

5. What Is a Neuronal Map, How Does It Arise, and What Is It Good For?

6. What Is Fed Back?

7. How Can the Brain Be So Fast?

8. What Is the Neural Code?

Sejnowski and van Hemmen, Ed. (2006), styled after Hilbert’s program.
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23 Problems ... continued
9. Are Single Cortical Neurons Soloists or Are They Obedient Members of a

Huge Orchestra?

10. What Is the Other 85 Percent of V1 Doing?

11. Which Computation Runs in Visual Cortical Columns?

12. Are Neurons Adapted for Specific Computations?

13. How Is Time Represented in the Brain?

14. How General Are Neural Codes in Sensory Systems?

15. How Does the Hearing System Perform Auditory Scene Analysis?

16. How Does Our Visual System Achieve Shift and Size Invariance?
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23 Problems ... continued
17. What Is Reflected in Sensory Neocortical Activity: External Stimuli or

What the Cortex Does with Them?

18. Do Perception and Action Result from Different Brain Circuits?

19. What Are the Projective Fields of Cortical Neurons?

20. How Are the Features of Objects Integrated into Perceptual Wholes

That Are Selected by Attention?

21. Where Are the Switches on This Thing?

22. Synesthesia: What Does It Tell Us about the Emergence of Qualia,

Metaphor, Abstract Thought, and Language?

23. What Are the Neuronal Correlates of Consciousness?
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Outline
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Questions to Consider

1. How to understand the neural code?

2. How did consciousness evolve?

3. How does the visual system process texture?

4. How to acquire the connectome?
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1. How to Understand the Neural Code?
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1. How to Understand the Neural Code?

I f
S

fI
S

(a) From the OUTSIDE (b) From the INSIDE

• How can we understand the neural code? (X)

• How can the brain itself understand its neural

code? (O)
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Understanding the Neural Code, by the Brain

• What do these blinking lights mean?

• This is the BRAIN’s perspective.

– Seems impossible to solve!
13



Understanding the Neural Code, by Us

• Now we can understand the meaning.

• This is OUR perspective.

– However, this methodology is not available to the brain!
14



How to Understand the Neural Code?

I f
S

fI
S

(a) From the OUTSIDE (b) From the INSIDE

• How can we understand the brain? (X)

• How can the brain itself understand itself? (O)

– Solution is through sensorimotor learning – not

obvious when wrong question asked (Choe and Smith

2006; Choe et al. 2007). 15



Sensorimotor Learning to the Rescue

• Property of motor output that maintains internal state

invariant

• Same as property of encoded sensory information.
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Understanding, Inside the Brain
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2. How did Consciousness Evolve?
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2. How did Consciousness Evolve?

zombieconscious

• How did consciousness evolve? (X)

• How did the necessary conditions of

consciousness evolve? (O)
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2. How did Consciousness Evolve?

• How did consciousness evolve? (X)

• How did the necessary conditions of

consciousness evolve? (O)

– Former is subjective, latter is objective.

– Predictive dynamics found to be key (Choe et al. 2012).

zombieconscious
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

• What if I say there are such events?
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

• What if I say there are such events?

• I will clap my hands in the next 5 seconds.
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

• What if I say there are such events?

• I will clap my hands in the next 5 seconds.

• “My” actions are 100% predictable, and this (authorship) is

a key property of the self, the subject of consciousness.
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Necessary Condition for Consciousness

• Are there future events that are 100% predictable?

• What if I say there are such events?

• I will clap my hands in the next 5 seconds.

• “My” actions are 100% predictable, and this (authorship) is

a key property of the self, the subject of consciousness.

• Thus, the brain dynamics have to be predictable.
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Could the Necessary Condition Evolve?
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• Simulated evolution.

• Measure predictability of internal state dynamics.
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Predictable vs. Unpredictable Internal Dyn.

• Internal dynamics of a simple pole-balancing

controller neural network (Kwon and Choe 2008).
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Predictable vs. Unpredictable Internal Dyn.

• Performance in controllers with high vs. low internal

state predictability (Kwon and Choe 2008).

• Controllers with high ISP better fit in changing

environment: Necessary condition can evolve!
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3. How Does the Visual System

Process Texture?
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3. How Visual System Processes Texture?

• How does the visual system process texture? (X)

• What is the nature of texture? (O)
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How Visual System Processes Texture?

• How does the visual system process texture? (X)

• What is the nature of texture? (O)

– Texture is a surface property and is thus tactile.

– Tactile RFs more powerful than visual RFs (Bai et al.

2008; Park et al. 2009).
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Texture in 2D

• Can you easily see the texture boundary?
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Texture in 3D

• Now can you see the boundary?
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Preprocessing with Visual vs. Tactile RF
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• Preprocess texture with visual vs. tactile receptive field.

• Run classifier on result.
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Tactile vs. Visual Texture Processing
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• Tactile filter better than visual filter (Bai et al. 2008).

• Texture may be more intimately related to touch.
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4. How to Acquire the Connectome
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4. How to Acquire the Connectome

Imaging: Diffusion Tensor Imaging Light Microscopy Electron Microscopy

Scale: ∼ 10 cm cube ∼ 1 cm cube ∼ 100 um cube

Resolution: ∼ 1 mm cube ∼ 1 um cube ∼ 10 nm cube

Hagmann et al. (2007) Mayerich et al. (2008) Denk and Horstmann (2004)

• How to acqiure the connectome? (X)

• What if the connectome is available today? (O)
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4. How to Acquire the Connectome

Imaging: Diffusion Tensor Imaging Light Microscopy Electron Microscopy

Scale: ∼ 10 cm cube ∼ 1 cm cube ∼ 100 um cube

Resolution: ∼ 1 mm cube ∼ 1 um cube ∼ 10 nm cube

Hagmann et al. (2007) Mayerich et al. (2008) Denk and Horstmann (2004)

• How to acqiure the connectome? (X)

• What if the connectome is available today? (O)

– Test analysis methods with synthetic connectome.
38



What if Connectome is Available Today?

• C. elegans connectome is available (White et al. 1986).

– Without activity and behavior data, progress is slow.

• Izquierdo and Beer (2013): used genetic algorithm to

search for the parameters.

• Sohn et al. (2011): used cluster analysis to identify

functional modules.
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Analysis of the Connectome

• Neuroimaging-based

– Park et al. (2014): Used graph-ICA to identify

task-sepecific subnetworks.

– van den Heuvel and Sporns (2011): Rich club

• EM-level connectome

– Seung and Sümbül (2014): Cell types,

connectivity, and function (direction selectivity) in

the retina.
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Synthetic Connectomics

• Simulated evolution of neural network controllers.

• Use a topological evolution algorithm (NEAT, Stanley and

Miikkulainen 2002).

• Full access to connectivity, weight, activity, and behavior.
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Example: Analyze This!

in: 0

out :  2

hid:  3983

in:  1

out :  5

hid:  406

• Simple circuit evolved using Neuroevolution (NEAT).

– Hard to know what it does without sensorimotor

linkage: Brain in a vat.
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Example: Context

• Task: Navigation to goal.

• Input: fixed input (bias) and angle to goal.

• Output: thrust and angle adjust.
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Approach: Lesion Study

in: 0

out :  2

hid:  3983

in:  1

out :  5

hid:  406

in: 0

out :  2

hid:  3983

in:  1

out :  5

hid:  406

• Observe behavior after eliminating connections or

neurons.

• Result: works well with almost everything gone!

– Need to study behavior in a social context to fully

understand circuit function.
44



Example 2: Tool Use

• Articulated arm.

• Tool (green bar) pick up and reach goal.

• Evolved neural network controller.
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Evolved Circuits: S2T

• Complexity depends on fitness criterion used.
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Evolved Circuits: DS

• Complexity depends on fitness criterion used.

• How can we analyze these circuits?
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Tool Use Behavior

• Articulated arm.

• Tool (green bar) pick up and reach goal.

48



Tool Use Behavior: Various Patterns
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Performance

• D: distance, S: speed, T: tool pick up frequency

• Decent performance, bettwe with “T”.
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How to Understand the Evolved

Networks?

• Analyze recurrent loops (cycles in the connectivity).

• Clustering of activation dynamics.

• Correlated behavior and activation dynamics.

• Mostly preliminary work at this point.
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Importance of Recurrent Connections

• Faster evolution (top), more compact networks (bottom).
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Recurrent Loops vs. Performance

• Number of loops positively correlated with performance.
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Example Network

• A representative successful network.
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Activation of Neurons and Behavior



Synthetic Connectomics Techniques

to be Explored

• Behavior categorization

• Internal dynamics categorization

• Systematic lesion studies and causality analysis

• Individual vs. social context comparison

• Circuit module identification through phylogenetic

profiling

• Task-circuit mapping through black-box transfer

learning
55



Discussion and Conclusion
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Discussion: More Questions

• How are memories stored and retrieved? (X)

– Assumes memory is about the past.

– Assumes that memory is internal.

• How memories are used to predict? (O)

– Memory is for the future (Lim and Choe 2006b, 2005, 2006a, 2008).

• How are the processings of internal and external memory

related? (O)

– Memory can be inside AND outside (Chung and Choe 2011).

57



Discussion: Yet More Questions

• How does the brain process information? (X)

– Information has meaning only relative to an observer.

– Shannon’s information: No semantics, by definition.

• How does the brain process meaning? (O)

– Meaning/semantics should be inherent to the brain.

• How does the brain optimize speed/accuracy/quantity? (X)

• How does the brain optimize quality? (O)
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Conclusion

• Taking the brain’s own perspective.

• Questioning the nature of things.

• Reducing to tractable, objective necessary conditions.

• Do we have powerful enough tools, if full data is given?
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