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Outline 

• Overview	of	chemical	risk	assessment	

•  Examples	of	key	challenges	and	role	of	
computaJonal	methods	

•  Risk	from	complex	and	varied	exposures	
•  Addressing	populaJon	variability	
•  QuanJfying	risk	and	uncertainty	

• Risk	assessment	as	translaJonal	science	
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Source-to-Outcome	ConInuum	

Environmental	concentraIons	

Internal	concentraIons	

Biological	response	measurements	

Physiological/health	status	

External	doses	

Exposure	

ToxicokineIcs	

Toxicodynamics	

Systems	dynamics	

Source/stressor	formaIon	

Fate	&	Transport	

Exposure	Assessment	
ScienIfic	Components	of	Risk	Assessment	
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Transport and transformation 
of chemicals in the 
environment 

Biodegradation
Organic breakdown

Photolysis
Reaction with sunlight
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Between	Media
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Within	Medium
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Medium	

Air

Environmental	
Medium	

Soil

Environmental	
Medium	

Surface	Water

Environmental	
Medium	
Biota Resuspension	

Deposition
Between	Media
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Exposure modeling 

6	

Storm	surge	from	Hurricane	

Sediment	deposiIon	



Estimating Human Exposure in 
the Population 

Source:	SAP	SHEDS	Overview,	7/14/2010	
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Source-to-Outcome	ConInuum	

Environmental	concentraIons	

Internal	concentraIons	

Biological	response	measurements	

Physiological/health	status	

External	doses	

Exposure	

ToxicokineIcs	

Toxicodynamics	

Systems	dynamics	

Source/stressor	formaIon	

Fate	&	Transport	

Exposure	Assessment	
ScienIfic	Components	of	Risk	Assessment	

PharmacokineIcs/ToxicokineIcs	
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Toxicokinetics =  
“Fate and transport within the 
body” 
•  Exposure	alone	is	not	sufficient	to	elicit	toxicity	

•  InteracJon	between	an	exogenous	agent	and	a	biological	target	
•  What	is	the	agent	or	toxic	moiety?	
•  How	does	it	get	to	the	biological	target?	
•  How	much	of	the	agent	gets	there?	
•  How	long	does	it	stay	there?	

•  ToxicokineIcs	is	the	study	of	the	movement	of	chemicals	in	and	
out	of	the	body	(“what	the	body	does	to	the	chemical”)	

•  AbsorpJon	
•  DistribuJon	
•  Metabolism	
•  ExcreJon	

9	



For pharmaceuticals – mostly 
use simple empirical models 

Central	
Compart-
ment =	AC

Amount	
in	gut	=	

AG

Peripheral	
Compart-
ment =	AP

+	 =	 PredicJons	about	
similar	scenarios	

Chemical-specific data 

in vivo Empirical	models	
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More complex models trade off 
simplicity for predictive power 

Central	
Compart-
ment =	AC

Amount	
in	gut	=	

AG

Peripheral	
Compart-
ment =	AP

+	 =	 PredicJons	about	
similar	scenarios	

=	

PredicJons	about	
scenarios	with	

different:	
•  Exposure	routes,	

duraJons,	
levels,	pajerns	

•  Species	
•  Individuals	

Qc

Cvl

Cvf

Cvr

Cvs

Qc

Ca

QL

Qf

Qr

Qs

Ci Cx

Qp

Lung

Liver

Fat

Rapidly perfused (brain, kidney, etc.)

Slowly perfused (muscle, bone, etc.)

Empirical	models	
(simple	&	quick)	

PBPK	models	
(complicated	&	Ime-consuming)		

in vitro 

Chemical-specific data 

in vivo 

+	
Physiological 

Data 

+	
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Source-to-Outcome	ConInuum	

Environmental	concentraIons	

Internal	concentraIons	

Biological	response	measurements	

Physiological/health	status	

External	doses	

Exposure	

ToxicokineIcs	

Toxicodynamics	

Systems	dynamics	

Source/stressor	formaIon	

Fate	&	Transport	

Exposure	Assessment	

Hazard	IdenIficaIon	and	
Dose-Response	Assessment	

ScienIfic	Components	of	Risk	Assessment	

12	

PharmacokineIcs/ToxicokineIcs	



Hazard Identification 
•  DeterminaJon	of	whether	a	parJcular	chemical	is	or	is	not	
causally	linked	to	parJcular	health	effects	

•  Increased	incidence	
•  Increased	severity	

Recent	emphasis	has	been	on	applying	systemaIc	review	methods	
to	evaluate	evidence	of	causality	(not	discussed	further	today)	

What	adverse	effects	have	been	
observed	or	are	anIcipated?	

•  Human	data	
•  Laboratory	animal	data	
•  In	vitro	data	
•  Physical/chemical/molecular	
property	data	

For	each	adverse	effect,	what	is	the	evidence	
that	the	agent	can	cause	it	in	humans?	

•  Availability	of	data		
(absence	of	evidence	≠	evidence	of	absence)	

•  Consistency	within	and	across	the	different	
types	of	data.	

•  Biological	plausibility	/	mechanisJc	basis	
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Peracelsus	

	

	
Known	as	the	‘father	of	toxicology’.	The	saying	
“Dosis	facit	venenum”	(The	dose	makes	the	poison)	
is	a?ributed	to	him.	His	actual	quote	translates	“All	
things	are	poisons,	for	there	is	nothing	without	
poisonous	qualiEes...it	is	only	the	dose	which	
makes	a	thing	poison.”	

(Phillippus	Aureolus	Theophrastus	Bombastus	von	Hohenheim)	
 

1493-1541	

therapeutic 
effect 

toxic 
effect 

increasing dose 

Slide	courtesy	of	D.	Threadgill	

Dose-Response – Many still 
ascribe to the principles of 
Peracelsus… 
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Traditional interpretation: 
Existence of a “threshold” 
below which there are no 
effects 

•  NOAEL:	Greatest	concentraJon	
or	amount	of	a	substance,	
found	by	experiment	or	
observaJon,	that	causes	no	
adverse	alteraJon	…of	the	
target	organism	disJnguishable	
from	those	observed	in	normal	
(control)	organisms	of	the	same	
species	and	strain	under	the	
same	defined	condiJons	of	
exposure.*	

•  Commonly	viewed	(incorrectly)	
as	an	experimental	dose	
threshold.		
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Implementation:  
“Safe Human Dose” Established by 
Use of “Uncertainty” or “Safety” 
Factors 
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Source-to-Outcome	ConInuum	

Environmental	concentraIons	

Internal	concentraIons	

Biological	response	measurements	

Physiological/health	status	

External	doses	

Exposure	

ToxicokineIcs	

Toxicodynamics	

Systems	dynamics	

Source/stressor	formaIon	

Fate	&	Transport	

Exposure	Assessment	

Risk	
CharacterizaIon	

ScienIfic	Components	of	Risk	Assessment	
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Hazard	IdenIficaIon	and	
Dose-Response	Assessment	



Information

D
E
C
I
S
I
O
N

Ban
More research
Standards:
air, water, food

Priorities:
research, 
regulation

Risk char

Social

Economic

Legal

• Epidemiology
• Clinical Studies
• Animal Studies

o Species, exposure, etc.

• S.A.R. (Structure Activity   
Relationships)

• Modeling

RESEARCH
RISK

ASSESSMENT

Hazard Identification
Dose-Response 

Assessment
Exposure Assessment

Information

Research 
Needs

Assessment Needs

Planning & Scoping

RISK
MANAGEMENT

Risk	Assessment	in	the	Context	of	Research	&	Decision-Making	
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Multi- and trans-disciplinary 
nature of risk assessment 
• Requires	data	and	models	from	mulJple	scienJfic	
disciplines.	

• Requires	methods	and	approaches	for	integraJng	
diverse	informaJon	to	draw	scienJfic	conclusions	
about	risk.	

• Requires	consideraJon	of	not	only	scienJfic,	but	
also	social,	economic,	and	legal	factors	in	order	to	
inform	decisions	about	managing	risk.	
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Examples of challenges and 
computational methods 
• Complex	and	varied	exposures	with	incomplete	
data	on	chemical	risks	

•  Incomplete	understanding	of	populaJon	variability	
in	suscepJbility	to	chemical	risks	

•  Inadequate	quanJficaJon	of	chemicals	risk	and	its	
uncertainJes	
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Example	Challenge:	Exposure	assessment	for	environmental	mixtures	
Source-to-Outcome	ConInuum	

Source/media	concentraIons	

Internal	concentraIons	

Biological	response	
measurements	

Physiological/health	status	

External	doses	

Exposure	

ToxicokineIcs	

Toxicodynamics	

Systems	
dynamics	

Storm	surge	from	Hurricane	

Sediment	deposiIon	

Usual	Approach	is	to	perform	“targeted”	
chemical	analyses:	

“Known	known”	contaminants	 “Known	unknown”	contaminants	

•  How	do	you	prioriIze	“known	unknowns”	given	
limited	Ime	and	resources?		

•  What	about	“unknown	unknown”	contaminants?	21	



Proposed solution based on 
the principle of “read-across.” 
•  Hypothesis	that	data	gaps	
can	be	filled	by	“analogy”	

•  Requires:	
•  Data	and	method	to	
determine	“similarity”	

•  A	“reference”	set	from	
which	to	find	“analogue”	

•  TradiJonally	based	on	
•  QualitaJve	similarity	in	
chemical	structure	&	
properJes	

•  Single	reference	chemical	
representaJve	of	a	
“group”	

Traditional	Read-Across	for	
Filling	Data	Gaps

Phys/Chem/Bio	Properties

●●●○●●○●
Hazard	Data

●

Source/Analogue Chemical

Phys/Chem/Bio	Properties

●○●●●●○●
Hazard	Data

●

Reference Chemicals

Phys/Chem/Bio	Properties

●●●○●●○●
Hazard	Data	Gap

○

Target Chemical

Identify	Target	
Chemical	with	
Data	Gap

Fill	Data	Gap	
Using	Analogue	

Data

Select	“Similar”	
Source/	
Analogue	
Chemical

Compare	
Chemical	

Properties	to	
Reference	
Chemicals
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Proposed solution based on 
the principle of “read-across.” 
•  Extend	the	single	
chemical	approach	to	
environmental	mixtures		

• Use	high-throughput	
chemical	and	biological	
profiling	to	define	
“similarity”	

•  Similarity	based	on	
mixture	of	reference	
chemicals	

Environmental	Emergency	Read-Across	for	
Assessment	of	Complex	Mixtures

Bioactivity

●●●○●●○●
Health	Hazard

●

Source/Analogue Mixture

Bioactivity	

●○●●●●○●
Health	Hazard

●

Reference Chemicals

Bioactivity	

●●●○●●○●
Health	Hazard

○

Target MixtureTest	Bioactivity	of	
Environmental	Mixture	

Estimate	Health	
Hazard	Using	Analogue	

Data

Construct	“Similar”	
Source/Analogue	

Mixture

Deconvolute
Bioactivity	Using	

Reference	Chemicals	
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Data for defining similarity 
High	dimensional	untargeted	
chemical	profiling	using	Ion	Mobility	
Spectroscopy/Mass	Spectrometry	

High	dimensional	biological	
profiling	using	induced-pluripotent	
stem	cell-derived	human	Issues	

24	

Human iPSC in vitro models



	 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proof of principle that individual 
and complex substances can be 
grouped 
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Computational demands 
•  MulJple	types	of	high-
dimensional	data	processing	

•  MulJ-dimensional	chemical	
data	

•  Imaging	data	
•  Time-series	data	
•  Genomic	(gene	expression)	
data	

•  MulJvariate	data	integraJon	
to	define	“similarity”	

•  DeconvoluJon	to	construct	
“mixture	analogues”	using	
reference	chemicals	

•  For	quanJfying	risk,	
classificaJon	is	not	enough	–	
need	a	numerical	predicJon.	

𝑦=∑𝑘=1↑𝑛▒​𝑎↓𝑘  ​𝑥↓𝑘    

26	



Example	Challenge:	Characterizing	human	variability	
Source-to-Outcome	ConInuum	

Source/media	concentraIons	

Internal	concentraIons	

Biological	response	
measurements	

Physiological/health	status	

External	doses	

Types	of	
Biological	
Variability	

Co-exposures	

Food/	
NutriJon	

Gender,	
Lifestage	

Heredity	
(geneJc	&	
epigeneJc)	

ExisJng	
health	

condiJons	

Psychosocial	
stressors	

Exposure	

Modifying	
source-to-
outcome	
parameters	

ToxicokineIcs	

Toxicodynamics	

Systems	
dynamics	

Modifying	
baseline	
condi4ons.	
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Claudius	Galenus	(Galen	of	Pergamum)	

129-217	AD	
“But	remember	throughout	that	no	external	cause	is	
efficient	without	a	predisposiEon	of	the	body	itself.	
Otherwise,	external	causes	which	affect	one	would	affect	
all.”	

Slide	courtesy	of	D.	Threadgill	

Example	Challenge:	Characterizing	human	variability	

28	
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Can we do better than dividing 
by a factor of 10? 

										NOAEL	
RfD	=	---------------	

									10	x	10	
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For pharmaceuticals (and some 
environmental chemicals), 
generally have direct, human 
empirical data 
•  Long	history	of	
methodological	
development	
(populaJon	PK-PD).	

•  Both	frequenJst	and	
Bayesian	staJsJcal	
approaches.	

• What	can	you	do	in	
the	absence	of	
empirical	data?	

Joel Tarning et al. Antimicrob. Agents Chemother. 
2009;53:3837-3846 
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Limitations to characterizing 
variability for environmental 
chemicals 

31	

Epidemiologic	&	
clinical	studies	

Animal	
bioassays	

TK	
models	

In	vitro	
assays,	
Toxicity	
pathways	

Adverse	
Outcome		
Pathways	

•  Available	for	relaJvely	few	chemicals	(~100).	
•  Limited	power	to	examine	populaIon	variability/suscepIbility.	
•  Generalizing	from	occupaIonal/paIent	cohorts	to	the	populaIon.	

•  Available	for	relaJvely	few	chemicals	(<1000).	
•  Uncertain	interspecies	differences.	
•  Homogeneous	(geneIcs,	diet,	etc.)	experimental	animals.	

•  Available	for	relaJvely	few	chemicals	(~100	PBPK;	<1000	total).	
•  Few	examples	analyzing	populaIon	variability	or	uncertainty.	

Toxicity	values	and	risk	characterizaJon	

Source-to-Outcome	Continuum

Source/media	concentrations

Internal	concentrations

Biological	response	
measurements

Physiological/health	status

External	doses

Exposure

Toxicokinetics

Toxicodynamics

Systems	
dynamics

•  Available	for	more	chemicals	(~10,000).	
•  Uncertain	relaJonship	to	health	risk.	
•  GeneIcally	homogeneous	in	vitro	systems.	

•  Available	for	only	a	few	endpoints	(~10?).	
•  QualitaJve,	not	quanJtaJve.	
•  Most	are	arJficially	linear	constructs.	
•  Variability/suscepIbility	not	included.	
•  Available	for	relaJvely	few	chemicals	(<1000).	
•  Do	not	adequately	address	uncertainty,	

variability,	suscepIbility	(10-fold	factor).	
•  In	most	cases,	do	not	explicitly	esJmate	risk.	



Possible	approaches	without	direct	empirical	data	

In	vitro	data	 In	vivo	data	 In	silico	methods	
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GeneIcally	diverse	
human	populaIon	

GeneIcally	defined	
sample	of	populaIon	

High	throughput	in	vitro	
model	system	

hjp://en.wikipedia.org/wiki/1000_Genomes_Project	

Structurally	diverse	
chemical	populaIon	

~170	
compounds	

Abdo	et	al.,	2015	
Chiu	et	al.,	2017		
hjps://doi.org/10.14573/altex.1608251		

Chemical-Specific	TD	Variability	Factor	(TDVF01):	
The	factor	esJmated	to	protect	up	to	the	most	sensiJve	1%	for	

human	toxicodynamic	variability	for	a	chemical	

~1000	individuals	
cytotoxicity	screening	

Cadmium	Chloride	
~2-fold		

Catechol	
~3-fold	

Organic	and	inorganic	mercury	compounds	
>8-fold	



Population Toxicodynamics for 
Cardiotoxicity using Cardiomyocytes  

34	

Untreated (DMSO) 

D
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 ID
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7 

10 µM Sotalol 

~100	individual	
“healthy”	donors	

100 µM
10 µM

1 µM
0.1 µM

Diverse	set	of	~140	
chemicals	



Computational demands 
•  Pre-processing	mulJple	
types	of	high-dimensional	
data	

•  Imaging	data	
•  Time-series	data	
•  Genomic	(gene	
expression)	data	

•  Automated	
concentraJon-response	
modeling	

•  DisJnguishing	true	
populaJon	heterogeneity	
from	random	errors	

Concentration-Response	Data,	Logistic	Model,	
Robust	Errors
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Normal	Human	Population	Model

Prior	Distributions	for	Hyperparameters Individual	EC10 estimates	
• Directly	calculated	from	
tested	population	using	
individual	θ0,	β0,	and	β1
estimates.

• Toxicodynamic Variability	
Factor	(TDVF)	=	ratio	of	
median	to	1st percentile	
individual	EC10s can	be	
estimated	for	n >>	100.

n cell	lines
GM06984
GM06985
GM06986
GM06991
GM06993
GM06994

…

Convergence

Model	fits
• All	σbatch <	10
• Visual	confirmation

Reliability	of	individual	EC10
predictions
• Central	estimate	of	EC10 in	

tested	concentration	range.
• Posterior	uncertainty	range	

in	each	EC10 <	1000-fold.

MCMC	
simulations

Adequate
model	for	
individual	
EC10
predictions

m0

etc.…

m R=1.00^

R=1.01^

θ0

Predicted	population	
distribution	of	EC10s	
• Use	estimated	population	

parameters	m0 ,	m1,	sd0,	and	
sd1 to	generate	predicted	
population	of	β0 and	β1 via	
Monte	Carlo	sampling.

• Toxicodynamic Variability	
Factor	(TDVF)	=	ratio	of	
median	to	1st percentile	
sampled	EC10s can	be	
estimated	for	any	n.

Reliability	of	population	EC10
predictions
• Unimodal	,	normal	

distributions	of	β0 and	β1.
• β0 and	β1 correlation	<	0.5.

Adequate
model	for	
population
EC10
predictions

Model	PredictionsModel	EvaluationModel	Specification

m		 ,	m0

~Normal	(N)

θ0 m1,	sd ,	sd0,	sd1,	σbatch

~Half-Normal	(>0)

θ0

y(conc)	=	θ0+(θ1–θ0)inv.logit[β0+β1ln(conc.)]+ε

θ1 =	–100
ε	~	Student-t5(0,σbatch)

~N	(m0,sd0)	~N(m			,	sd ) ~N(m1,sd1)	θ0 θ0

σbatch <	10 σbatch >	10
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QuanIfying	risk	and	uncertainty	
Source-to-Outcome	ConInuum	

Source/media	concentraIons	

Internal	concentraIons	

Biological	response	
measurements	

Physiological/health	status	

External	doses	

Exposure	

ToxicokineIcs	

Toxicodynamics	

Systems	
dynamics	
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??	•  What	is	the	risk	in	terms	of	severity	
&	incidence	in	the	populaJon?	

•  What	are	the	confidence	intervals?	

??	
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Test	PopulaIon	
Dose-Response	

Toxicity	Value	
ProtecIve	of	
PopulaIon	

Interspecies	
Adjustment	to	
“Typical”	Human	

Intraspecies	
Adjustment	to	

“SensiIve”	Human	

HDM
I	=	Dose	where	at	most	
I=5%	of	the	populaIon	

experience	a	M=10%	effect.	

POD	 UFA=10	 UFH=10	 RfD	

Human	Dose
(Avg.	daily	dose)

M
ag
ni
tu
de

	o
f	r
es
po

ns
e 100

I =	99%I =	50%I =	1%

Different	percentile	individuals

M =	10

I =	1%

WHO	(2014):	Guidance	on	EvaluaJng	and	Expressing	Uncertainty	in	Hazard	Assessment.	HarmonizaJon	Project	Document	11.		
Chiu	WA	&	Slob	W	(2015):	A	Unified	ProbabilisJc	Framework	for	Dose-Response	Assessment	of	Human	Health	Effects.	EHP,	DOI:	10.1289/ehp.1409385	

•  Each	“factor	of	10”	is	replaced	by	a	
distribuJon	derived	from	empirical	
data.	

•  Dose-response	and	each	
adjustment	are	combined	
probabilisJcally	to	derive	a	
confidence	interval	that	
characterizes	uncertainty.	

•  Result	is	Target	Human	Dose	
(HDM

I):	human	dose	that	at	which	a	
frac4on	I	of	the	populaJon	shows	
an	effect	of	magnitude	(or	severity)	
M	or	greater	(for	the	criJcal	effect	
considered).	

ApplicaIon	of	ProbabilisIc	
Approaches	to	QuanIfy	Risk	and	
Uncertainty 
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TK models: approaches to 
quantify uncertainty 
•  Physiologically-based	
pharmacokineJc	models	are	needed	
in	the	absence	of	empirical	data	

•  Many	parameters,	each	with	
uncertainty	and	populaJon	
variability	

•  Models	are	not	uniquely	idenJfiable	
from	direct	observaJons	

•  Two	approaches	have	been	used:	
1.   Fit	all	parameters	using	Bayesian	

approach	
2.   Fix	all	but	a	small	subset	of	

parameters	at	nominal	values,	and	
fit	the	remaining	using	a	frequenJst	
approach	

•  #1	can	be	computaJonally	
prohibiJve,	whereas	#2	can	lead	to	
biased	results.	
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Reducing dimensionality with 
global sensitivity analyses 
•  Hypothesis:	Can	reduce	dimensionality	of	Bayesian	analysis	
by	fixing	“low	sensiJvity”	parameters	at	nominal	values	
without	introducing	significant	bias.	

•  Test	hypothesis	by	comparing	reduced	model	results	with	
those	of	full	Bayesian	analysis	(“gold	standard”).	

•  Need	global	rather	than	local	sensiJvity	analysis	because	of	
potenJal	nonlineariJes	across	parameter	space	

•  Sobol	indices:	ReducJon	in	output	variance	if	the	input	
parameter	were	known	exactly	

•  First	order	term	measures	direct	effect	
•  InteracJon	term	measures	effects	combined	with	other	parameters	
•  MulJple	algorithms	for	calculaJng	indices	
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Preliminary results 

Full	Bayesian	
Analysis	

GSA	

Reduced	
dimensionality	

analysis	

21	parameters,	19	hr	simulaJon	Jme	 12	parameters,	10	hr	simulaJon	Jme	

Results	nearly	indisInguishable	
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Molecular Cellular Tissue Organism
Chemical	blocks	ion	

channel
Action	potential	

prolonged
QT	interval	
prolonged

Increased	likelihood
of	toursades	de	

pointes

Increased	
likelihood of	
myocardial	
infarction

Increased	
likelihood of	

death

Chemical

Inter-individual	variability	(TK,	TD)
Variability	and	stochasticity from	other	stressors/risk	factors

Source:	hERGAPDbase

Experimental	Data Risk	Assessment	Translation

Adverse	Outcome	Pathway

Untreated (DMSO) 10 µM Sotalol

5-year 
CV 

Mortality 

CalibraIon	
to	human	
clinical	data	

	
	
	
	
	
	
	
	

Biomarker-	
based		

populaIon		
risk	predicIon	

	
	
	
	
	
	
	
	

Predicting population risk from in 
vitro data 
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Computational demands 
• Monte	Carlo	simulaJon	
• Bayesian	esJmaJon	
using	Markov	Chain	
Monte	Carlo	

•  SJff	ODE	solvers	
• Global	sensiJvity	
analyses	
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Risk assessment is an 
inherently translational 
science 
•  Requires	
integraJon	of	data	
from	mulJple	
sources	across	the	
source-to-outcome	
conJnuum.	

•  Aimed	ulJmately	at	
supporJng	
decisions,	not	
tesJng	hypotheses.	

•  AddiJonal	
challenges	involve	
moving	from	a	
researching	
methods	to	
developing	tools	

Source-to-Outcome	Continuum

Source/media	concentrations

Internal	concentrations

Biological	response	
measurements

Physiological/health	status

External	doses

Exposure

Toxicokinetics

Toxicodynamics

Systems	
dynamics

Data	and	
Methods		

Decisions	

Needs	and	PrioriJes	

Tools	
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Echoes Prof. Dougherty’s seminar 
“Modern engineering as a 
translational science”… 
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Summary of computational 
demands of chemical risk 
assessment •  MulJple	types	of	high-
dimensional	data	processing	

•  MulJ-dimensional	chemical	
data	

•  Imaging	data	
•  Time-series	data	
•  Genomic	(gene	expression)	data	

•  MulJvariate	data	integraJon	to	
define	“similarity”	

•  DeconvoluJon	to	construct	
“mixture	analogues”	using	
reference	chemicals	

•  Automated	concentraJon-
response	modeling	

•  DisJnguishing	true	populaJon	
heterogeneity	from	random	
errors	

•  For	quanJfying	risk,	methods	
for	classificaJon	are	not	
enough	–	need	a	numerical	
predicJon.	

•  Monte	Carlo	simulaJon	
•  Bayesian	esJmaJon	using	
Markov	Chain	Monte	Carlo	

•  SJff	ODE	solvers	
•  Global	sensiJvity	analyses	

OpportuniIes	for	students/postdocs:	Chemical	Risk	Assessment	
suffers	from	lack	of	experIse	in	both	developing	and	applying	

computaIonal	methods.	 45	


