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Outline

* Overview of chemical risk assessment

* Examples of key challenges and role of
computational methods
* Risk from complex and varied exposures
* Addressing population variability
e Quantifying risk and uncertainty

e Risk assessment as translational science



Scientific Components of Risk Assessment

Source-to-Outcome Continuum Exposure Assessment

Source/stressor formation

Fate & Transport

Environmental concentrations

W

External doses

Internal concentrations

Biological response measurements

Systems dynamics

Physiological/health status
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Exposure modeling

Storm surge from Hurricane

Maximum Storm Tide, Category S Hurricane hitting at high I'_(l!‘
10
-

 Houston | Sediment deposition

Figure 8. Coastal inundation in a Category 5 hurricane.

»

Figure 4. Sediments in residential New Orleans post-
Katrina (Photo: Geoff Plumlee).
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Estimating Human Exposure In
the Population

Input
Databases

,,,,,,,,,,,,

e Concentrations
 Recipe/Food Diary

Exposure Factor
Distributions

A
A

A

e Calculate Individual
Exposure/Dose Profile

IInhalationI

Percentile

--"""'/

Percentile

Source: SAP SHEDS Overview, 7/14/2010
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Scientific Components of Risk Assessment

Source-to-Outcome Continuum Exposure Assessment

Source/stressor formation

Fate & Transport

Environmental concentrations

W

External doses

Internal concentrations

Biological response measurements

Systems dynamics

Physiological/health status
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Toxicokinetics =
"Fate and transport within the
body”

* Exposure alone is not sufficient to elicit toxicity

* Interaction between an exogenous agent and a biological target
* What is the agent or toxic moiety?
* How does it get to the biological target?
* How much of the agent gets there?
* How long does it stay there?

* Toxicokinetics is the study of the movement of chemicals in and
out of the body (“what the body does to the chemical”)

Absorption
Distribution
Metabolism
Excretion



For pharmaceuticals — mostly
use simple empirical models

Chemical-gpeoific data

T
0 5000

in vivo

)

B B8
= =

Empirical models

Predictions about
similar scenarios



More complex models trade off
simplicity for predictive power

Chemical-gpecific data

50 100 200 500 2000 5000

in vivo

in vitro
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a Physiological

Data
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Empirical models
(simple & quick)

¢

(complicated & time-consuming)
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PBPK models

Predictions about
similar scenarios

Predictions about
scenarios with
different:

° Exposu re routes,

durations,
levels, patterns

* Species
* Individuals



Scientific Components of Risk Assessment

Source-to-Outcome Continuum Exposure Assessment

Source/stressor formation

Fate & Transport

Environmental concentrations

W

External doses

Internal concentrations

Biological response measurements

Systems dynamics

Physiological/health status
R & g V
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Hazard |dentification

* Determination of whether a particular chemical is or is not
causally linked to particular health effects

* |Increased incidence
* Increased severity

What adverse effects have been For each adverse effect, what is the evidence
observed or are anticipated? that the agent can cause it in humans?
* Human data e Availability of data
« Laboratory animal data (absence of evidence # evidence of absence)
R e * Consistency within and across the different
types of data.

Physical/chemical/molecular - o - _
property data » Biological plausibility / mechanistic basis

Recent emphasis has been on applying systematic review methods
to evaluate evidence of causality (not discussed further today)



Dose-Response — Many still
ascribe to the principles of
Peracelsus...

Peracelsus

(Phillippus Aureolus Theophrastus Bombastus von Hohenheim)

1493-1541

Known as the ‘father of toxicology’. The saying L
“Dosis facit venenum ” (The dose makes the poison) & ",
is attributed to him. His actual quote translates “All [l
things are poisons, for there is nothing without
poisonous qualities...it is only the dose which
makes a thing poison.”

M

—

therapeutic .
effect increasing dose tOX IC
effect

Slide courtesy of D.iEhreadgill



Traditional interpretation:
Existence of a “threshold”
below which there are no
effects

* NOAEL: Greatest concentration A
or amount of a substance, }
found by experiment or
observation, that causes no
adverse alteration ...of the i‘/
target organism distinguishable
from those observed in normal
(control) organisms of the same E
species and strain under the E NOALL
same defined conditions of Dose
exposure.* (Avg. daily dose)

LOAEL

Magnitude of response

H®-

e Commonly viewed (incorrectly)
as an experimental dose
threshold.

*WHO definition



Implementation:

“Safe Human Dose” Established by
Use of “Uncertainty” or “Safety”
Factors

Magnitude of response
e

>

T Dose
(Avg. daily dose)
NOAEL
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Scientific Components of Risk Assessment

—

Source-to-Outcome Continuum Exposure Assessment

Source/stressor formation

Fate & Transport

Environmental concentrations

W

External doses

Internal concentrations

Biological response measurements

Systems dynamics

Physiological/health status
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Hazard Identification and
Dose-Response Assessment

Risk
—- Characterization
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Risk Assessment in the Context of Research & Decision-Making

Information Information

" "

S )

Research Assessment Needs
Needs
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Multi- and trans-disciplinary
nature of risk assessment

* Requires data and models from multiple scientific
disciplines.

* Requires methods and approaches for integrating
diverse information to draw scientific conclusions

about risk.

* Requires consideration of not only scientific, but
also social, economic, and legal factors in order to
inform decisions about managing risk.




Examples of challenges and
computational methods

* Complex and varied exposures with incomplete
data on chemical risks

* Incomplete understanding of population variability
in susceptibility to chemical risks

* Inadequate quantification of chemicals risk and its
uncertainties



Example Challenge: Exposure assessment for environmental mixtures

Source-to-Outcome Continuum

Source/media concentrations

External doses

Figure 8. Coastal inundation in a Category 5 hurricane

Toxicokinetics

Internal concentrations

Toxicodynamics

Biological response
measurements

Storm surge from Hurricane

Maximum Storm Tide, Category § Hurricane hitting at high tide
T _Aw 3 =

Sediment deposition

Figure 4. Sediments in residential New Orleans post-
Katrina (Photo: Geoff Plumlee).

Usual Approach is to perform “targeted”

chemical analyses:
“Known known” contaminants “Known unknown” contaminants

Table 2: Number of compounds per class of Contaminant

LT Dommtown Now Ordetns and their detection limits at GERG Laboratories
=
g 2000F [l Totstteod i sote vy Cas i ptecion
£ [ ;:::‘:::’ by PAH 53 1ng/g
5 e o PCB 209 1ng/g
= ioxin and Furans 17 0.510 2.5 pg/g
E Organochlorine Pesticides 20 1ng/g
g Organophosphate Pesticides 4 2ngfg
8 1000 Plasticizers 7 lugle
o Phenols 3 1uglg
- Chlorophenols 8 1ugle
500 Nitrophenols 4 1ug/g
Chlorinated Hydrocarbons 20 1ug/e
Lead 1 0.4 ug/g
A Mercury 1 0.01ug/g
————————— T ROCQORO MO = = 4 Cadmium 1 0.1ug/g
§§§g§€§§§ggggggg§§§ggz-;$g§ Chromium 1 5 ug/g
iggg“§2>w zZ9¢ 297_5,093,, Cobalt 1 10ug/g
?gégsog €333 Coppel 1 0.4 ug/g
2 g - Arsenic 1 0.1ug/g
Pl Zinc 1 0.4 ug/g
Selenium 1 0.10 ug/g
Nickel 1 0.10 ug/g

Figure 3. Lead in New Orleans soils after Katrina (1).

* How do you prioritize “known unknowns” given

limited time and resources?
e What about “unknown unknown” contaminants?




Proposed solution based on
the principle of “read-across.”

* Hypothesis that data gaps
can be filled by “analogy”

* Requires:
* Data and method to
determine “similarity”

* A “reference” set from
which to find “analogue”

* Traditionally based on

* Qualitative similarity in
chemical structure
properties

* Single reference chemical
representative of a

o V24

Traditional Read-Across for
Filling Data Gaps

Identify Target
Chemical with Target Chemical
Data Gap

Phys/Chem/Bio Properties

‘ eee0ee0e

Hazard Data Gap

Compare
Chemical O
Properties t
Reference Reference Chemicals
Chemicals
Phys/Chem/Bio Properties
00000000
Select “Similar” Hazard Data
Source/ PY
Analogue
Chemical Source/Analogue Chemical
Phys/Chem/Bio Properties
00000000
Fill Data Gap Hazard Data
Using Analogue PY

Data




Proposed solution based on
the principle of “read-across.”

* Extend the single
chemical approach to
environmental mixtures

* Use high-throughput
chemical and biological
profiling to define
“similarity”

* Similarity based on
mixture of reference
chemicals

Environmental Emergency Read-Across for
Assessment of Complex Mixtures

Test Bioactivity of
Environmental Mixture

Target Mixture

Bioactivity

Health Hazard
Deconvolute O
Bioactivity Using
Reference Chemicals Reference Chemicals
Bioactivity
z 00000000

Construct “Similar” Health Hazard

Source/Analogue
Mixture

Source/Analogue Mixture

Bioactivity

Estimate Health Health Hazard
Hazard Using Analogue P
Data




Data for defining similarity

High dimensional untargeted High. ¢_jimen.sior]al biological.
chemical profiling using lon Mobility  profiling using induced-pluripotent
Spectroscopy/Mass Spectrometry stem cell-derived human tissues

Human iPSC in vitro models
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Proof of principle that individual

and complex substances can be

grouped
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Computational demands

* Multiple types of high-
dimensional data processing

* Multi-dimensional chemical
data

* Imaging data
* Time-series data

* Genomic (gene expression)
data

* Multivariate data integration
to define “similarity”

. Dec_:onvolution to construct
“mixture analogues” using
reference chemicals

* For quantifying risk,
classification is not enough —
need a numerical prediction.

25 35

Functional
Cardiophysiology

t(sec)

Calcium-Flux

a5 55 65

75

Cellular/
Mitochondrial Toxicity

High-Content Imaging

ToxPi™

Category 1

de 3. 3 |

Category 2

o,

Category 3

Multi-dimensional
READ ACROSS
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Example Challenge: Characterizing human variability

Types of Source-to-Outcome Continuum
Biological
Variability Source/media concentrations
Heredity
(genetic &
~_epigenetic)

External doses

Gender, Modifying

Lifestage source-to- Toxicokinetics
outcome

parameters

Existing
health
conditions

Internal concentrations

- Biological response
Modifying measurements

Food/ baseline Systems
Nutrition conditions. dynamics

Co-exposures

Psychosocial

stressors 27




Example Challenge: Characterizing human variability

Claudius Galenus (Galen of Pergamum)

129-217 AD

“But remember throughout that no external cause is
efficient without a predisposition of the body itself.
Otherwise, external causes which affect one would affect

all.”
ENVIRONMENT

HAEMOPHILIA COLON ALZHEIMER'S STROKE CARDIO LUNG MOTOR

CANCER  DISEASE VASCULAR CANCER  VEHICLE
CYSTIC e DISEASE SKIN ACCIDENT

FIBROSIS  CANCER ASTHMA CANCER

DIABETES

Library of Congress

Slide courtesy of D. Threadgill
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Can we do better than dividing

by a factor of 107
- | :
o T S S
I I

(Avg. da Iyd )
RfD NOAEL



For pharmaceuticals (and some
environmental chemicals),
generally have direct, human
empirical data

. Lon%history of
methodological
development
(population PK-PD).

* Both frequentist and
Bayesian statistical
approaches.

Log lumefantrine concentration (ng/mL)

* What canyou doin
the absence of
empirical data?

0 2 4 6 8 10 12 14
Time (days)

Joel Tarning et al. Antimicrob. Agents Chemother.
2009;53:3837-3846



Limitations to characterizing
variability for environmental
chemicals

Source-to-Outcome Continuum || ¢ Hemiologic & * Available for relatively few chemicals (~100).
pldemIologic * Limited power to examine population variability/susceptibility.
clinical studies * Generalizing from occupational/patient cohorts to the population.

Source/media concentrations

Animal * Available for relatively few chemicals (<1000).
I bi * Uncertain interspecies differences.
el Homogeneous (genetics, diet, etc.) experimental animals.

External doses

TK * Auvailable for relatively few chemicals (~100 PBPK; <1000 total).
models « Few examples analyzing population variability or uncertainty.
e Available for more chemicals (~10,000).
Internal concentrations * Uncertain relationship to health risk.
I ool * Genetically homogeneous in vitro systems.
Toxicodynamics
assays, * Available for only a few endpoints (~107?).
Biological response Toxicity Adverse * Qualitative, not quantitative.
measurements pathways Outcome * Most are artificially linear constructs.

ds::;?:i‘:s Pathways * Variability/susceptibility not included.
L * Available for relatively few chemicals (<1000).
9 o Q , * Do not adequately address uncertainty,

variability, susceptibility (10-fold factor).
Toxicity values and risk characterization * In most cases, do not explicitly estimate risk.

31



Possible approaches without direct empirical data

In vitro data

Copy Number Variant CH W W)

Insertion (O W)
Deletion CH=—m

Inversion CHCII W)
Reference CHLTCBT)

Inter-individual range in ECyg (5%-95%): ~3-fold  Inter-individual range in ECyg (5%-95%): ~100-fold

Cytotoxicity (% Change from control)

100 80 -60 40 -20

20 40

0
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\ 2
\ 2% 2N
\ z s
5 % .
\ g 5
\ £8] <
N - 2
1 p— =

00 000 oo1 o1 T 0 w0
[Zinc pyrithione], uM

0001 001 01 1 10
[1,6-Hexamethylene diacrylate), M

0o —In Vitro
= In Vivo

T T T T T T,

10
Toxicodynamics Variability Factor

In vivo data

Mouse

Extrapolation

@ “Poor” models of humans
@ “Good” models of humans

In silico methods

-

Single Strain: Constant Genotype
A

. o S
Control 10 mg 25 mg 50 mg

: BN
0 mg lﬁmg
Vary the environment (e.g., treatment)

Many Strains: Varied Genotype

—

A
2 )
strain 1 Strain 2 %m?a %.?4 Strain 5

Strain 6 Strain 7

Fix the environment (same treatment), vary the genotype

Parental
Inbred
Strains

e

2

G2:F1

G2:F2

One Representative Chromosome

P ——

62:F20

Uniform Diversity of Variation

csTe

One of 1,000 Independent Collaborative Cross Strains

CC784

i

B 9 10111213 14 1516 17 18 19 XY

IE _I
|
H
|
|
II vll
1234567

5

O Ipamcvion
3 s e s i K

Interstudy variability

Interstrain variability
(BBC3F1 strain)

(Bradford et al. 2011)

@ ® ®
o [\
i

o}y

-

Experiment or Y
strain 7
Study / z,
E 7
Population o
7
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Genetically diverse
human population

http://en.wikipedia.org/wiki/1000_Genomes_Project

Insertion

Deletion CO =)
Copy Number Variant CBCNCWCT)

Inversion CH =W

Reference (BT

Genetically defined High throughput in vitro
sample of population model system

Structurally diverse
chemical population ' -

~1000 individuals
cytotoxicity screening

~170
compounds

Chemical-Specific TD Variability Factor (TDVF,):
The factor estimated to protect up to the most sensitive 1% for
human toxicodynamic variability for a chemical

Abdo et al., 2015
Chiu et al., 2017
https://doi.org/10.14573/altex.1608251

57: CAS# 10108-64-2; MCMC Sample: 1

9: CAS# 120-80-9; MCMC Sample: 1 69: CAS# 62-38-4; MCMC Sample: 1 121: CAS# 7487-94-7; MCMC Sample: 1
3

T T T T T
1e-04 1e-03 1e-02 1e-01 1e+00 1e+01 1e+02

Cadmium Chloride
~2-fold

1e-04 1e-03 1e-02 1e-01 1e+00 1e+01 1e+02 1e-04 1e-03 1e-02 1e-01 1e+00 1e+01 1e+02 1e-04 1e-03 1e-02 1e-01 1e+00 1e+01 1e+02
Catechol Organic and inorganic mercury compounds
~3-fold >8-fold
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Population Toxicodynamics for
Cardiotoxicity using Cardiomyocytes

-

~100 individual dob
“healthy” donors ] -4
2 Conce,"’aﬁ - 04—

0000000000

& (\Il | T
5 - HI— 900 900-
" B 10 uM : : .Cl-:é}-: ; 600+ [> ; 600+ \
. g: ,_'g,]* 300 300-) W “\
v . aky 6 0 L . : 0 : : :
chemicals 1 ¥ e
i 900 900
o]
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Computational demands

* Pre-processin

multiple
types of high—%li

mensional

Functional

Cardiophysiology

Cellular/
Mitochondrial Toxicity

LA

7
ata 4
s |
. * }
* Im dat 2]
aging data :
1
. . ol *
* Time-series data S T
tsec)
. . . .
° Genom'c ( ene Calcium-Flux High-Content Imaging
exp ression) data
Model Specification Model Evaluation Model Predictions
[ ) A u t O m a t e d Prior Distributions for Hyperparameters Convergence Individual EC,, estimates
Mg, Mo m,, sdg., 5do, 5dy, Gpseen | « Directly calculated from
. § =1.00 tested population using
individual 8, B,, and B;
concentration-response
~Normal (N) ~Half-Normal (>0) 101 hodel for | * Toxicodynamic Variability
M otc...” individual | Factor (TOVF) =ratio of
I I | O e I I l Normal Human Population Model Model fits EC median to 1%t percentile
Q 8 & . 10 individual EC, s can be
All 0,y < 10 - 108
* Visual confirmation predictions estimated for n >>100.
D . | . . | . t Obatcn <10 Open > 10 A
g g ~N(meg,, sda, ~N (mg,sd,) ~N(m,,sd,) " T
opulation heterogeneit L
- > )i " simulations | Rredictions Predicted population
p p g y y(conc) PD+(61 o]|nv.Ioglt[|3D+Blln(conc,)]i-s + Central estimate of EC,q in bution of EC,gs
6, =-100 tested concentration range. + Use estimated population
r O m r a n O m e r r O r S €~ Student-t5(0,0,,)  Posterior uncertainty range parameters mg , my, sd,, and
_ o in each EC,, < 1000-fold. sd, to generate predicted
n cell lines | g / Adequate population of B, and B, via
GM06984 | g i
go Ew—w—n Reliability of population Ec,, | model for Monte Carlo sampling.
GM06985 | © Ty = . * Toxicodynamic Variability
= predictions population .
GMO06986 N + Unimodal  normal Factor (TDVF) = ratio of
GM06991 E ® 7 distributio;’\s of B, and B ECyo median to 1%t percentile
GM06993 | 5 o . Byandp correlation <0 5. | Predictions sampled ECy¢s can be
GM06994 | © % T+ ° ! “ estimated for any n.
10*10°10210" 10° 10' 10*

Concentration (M)

Concentration-Response Data, Logistic Model,

Robust Errors

;;.




Quantifying risk and uncertainty

Source-to-Outcome Continuum

Source/media concentrations

—ll

External doses ) E o
v models
©
(]
Internal concentrations § ) /' N
Toxicodynamics o ) i q In vitro
i 4 assays
. . T T Dose
BIO|OgIC3| response (Avg. daily dose)
measurements RFD NOAEL
nami
dynamics 59 27
i i °t * What is the risk in terms of severity
& incidence in the population?
* What are the confidence intervals? -




Application of Probabilistic
Approaches to Quantify Risk and
Uncertainty

Test Population Interspecies Intraspecies Toxicity Value
Dose-Response Adjustment to Adjustment to Protective of
“Typical” Human “Sensitive” Human Population

— o I~ O
Each “factor of 10” is replaced by a

distribution derived from empirical
data.

Dose-response and each
adjustment are combined
probabilistically to derive a HD,,' = Dose where at most

confidence interval that 1=5% of the population
characterizes uncertainty. experience a M=10% effect
Result is Target Human Dose P ° )
(HD,,): human dose that at which a Human Dose
fraction I of the population shows (Avg. daily dose)
an effect of magnitude (or severity)

M or greater (for the critical effect

considered).

Different percentile individuals

A
100

agnitude of response

WHO (2014): Guidance on Evaluating and Expressing Uncertainty in Hazard Assessment. Harmonization Project Document 11. 37
Chiu WA & Slob W (2015): A Unified Probabilistic Framework for Dose-Response Assessment of Human Health Effects. EHP, DOI: 10.1289/ehp.1409385



TK models: approaches to
quantify uncertainty

* Physiologically-based

Inhiled Exhaled

pharmacokinetic models are needed v Lungs > Al
In the absence of empirical data . R
« Many parameters, each with ") Adiposetissue .
uncertainty and population
va rlablllty Ol Richly perfused |, E
tissues
* Models are not uniquely identifiable U R
from direct observations Poorly perfused
S tissues I
* Two approaches have been used: : R
1.  Fit all parameters using Bayesian Lver

approach -y
B I—’

2.  Fix all but a small subset of
parameters at nominal values, and
fit the remaining using a frequentist
approach

* #1 can be computationally
rohibitive, whereas #2 can lead to
iased results.

TCA in blood (mmol/l)
0 02 04 06 08 1.0 12
DCVG in blood (mmol/l)

DCA in blood (mmol/l)
2e-04 4e-04

DCVC in blood (mmol/l)
0 l1e-‘06 ; 29706 y 39;06 q N 29:05 ; 49;05 69:05

o 5

9

10 15 20 25
Time (hrs)



Reducing dimensionality with
global sensitivity analyses

* Hypothesis: Can reduce dimensionality of Bayesian analysis
by fixing “low sensitivity” parameters at nominal values
without introducing significant bias.

* Test hypothesis by comparing reduced model results with
those of full Bayesian analysis (“gold standard”).

* Need global rather than local sensitivity analysis because of
potential nonlinearities across parameter space

* Sobol indices: Reduction in output variance if the input
parameter were known exactly

* First order term measures direct effect
* Interaction term measures effects combined with other parameters
* Multiple algorithms for calculating indices




Preliminary results

1V Dosin 5
Parent APAP / € APAP Conjugate
= Prior total: t = 0.5h Prior total: t = 1h
03- Estimator Estimator
& eFAST 03-# o eFAST
D +
0.2 - Owen 021 & Owen
Arterial Rapidly Perfused Venous Arterial Rapidly Perfused Venous A
Blood Blood Blood Blood 01-
0.1-
Slowly Perfused Slowly Perfused
0.0 * *
0.0
01 0.1
LiVer gy | SESEORANGE LECLFGE SP 2 CELSPRANGE L RKIOT L8 b @
SR TG RN O FEES O o P R %\@g&é‘@@/
T OSOR ISR O 25 ARSI L
Conjugate & C;\o;l/\; K g \‘g@ © \Q\i &7 :f% éf@’\eg ‘\%o’fcfz S (§/‘° =

Parameter Parameter

Reduced
dimensionality
analysis

Full Bayesian
Analysis

21 parameters, 19 hr simulation time 12 parameters, 10 hr simulation time

CPL_APAP_mcgL CPL_AG_mcgL CPL_AS_mcgL
15000 — | ! '
15000 | © n 6000 — All parameters
o 5000 -~~~ Sensitivity only
10000 £10000 4 o ¢ £ 4000 1 b Tt
S g g 3000
~ 5000 — ~ 5000 - 2000
1000 —
0 i N s E e i N B e N B
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Time (hr) Time (hr) Time (hr) 40

Results nearly indistinguishable



Predicting population risk from in

wt

RFU

RFU
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Computational demands

* Monte Carlo simulation

* Bayesian estimation
using Markov Chain
Monte Carlo

e Stiff ODE solvers

* Global sensitivity
analyses



Risk assessment Is an
iInherently translational
sclence

Requires
integration of data Data and
from multiple Methods

sources across the
sourpe-to-outcome
continuum.

Aimed ultimately at
supporting
decisions, not
testing hypotheses.

Additional
challenges involve
moving from a

researching
methods to

developing tools

Source-to-Outcome Continuum

Source/media concentrations

—~M—

External doses

Internal concentrations

Biological response
measurements

Systems
dynamics

Decisions

Needs and Priorities 43



Echoes Prof. Dougherty’s seminar
“Modern engineering as a
translational science”...

oy P
Tavasy #"ﬂ;{,r - £

LATHEAS

A Sanae
Genomic Signal Processing Laboratory

Science and Action

* Arturo Rosenblueth and Norbert —
Wiener: “The intention and the result of a LAl
scientific Inquiry is to obtain an Benefits of a Translational System
understanding and a control of some part
of the universe.”

— For them, science and translational science are
inextricably linked, the ultimate purpose of

acquiring scientific knowledee being to — Guide the engineer in studying costs and benefits of action
translate that knowledge into action.

+ A translational mathematical system provides guides.

— Guide the scientist in building a fruitfully applicable model

— Guide the technologist in devising devices or treatments.

* In a properly functioning relationship, the scientist
does not hand the engineer a set of data and ask the
T engineer to find something in 1it; nstead, assuming a

e LG A T translational goal, the enterprise should be guided by

the goal and this goal should already have led a

carefully designed experiment.

1/23/2017 http://gsp.tamu.edu 33




Summary of computational
demands of chemical risk

aﬁjﬁﬁeﬁv&m&!ﬂt * Distinguishing true population

dimensional data processing heterogeneity from random
. (I;/Iulti-dimensional chemical errors
. ata. ot * For quantifying risk, methods
maging data for classification are not
* Time-series data enough — need a numerical

* Genomic (gene expression) data prediction.
* Multivariate data integration tos Monte Carlo simulation

define “similarity” . L. .
) ¢ Baye5|an estimation usin
 Deconvolution to construct Markov Chain Monte Carlo

o . 124 .
mixture analogues” using .
reference chemicals * Stiff ODE solvers

e Automated concentration- * Global sensitivity analyses
response modeling

Opportunities for students/postdocs: Chemical Risk Assessment

suffers from lack of expertise in both developing and applying
computational methods.




