Multivariate Multiscale Impacts of Genetic Variants on Gene Expression Variability in Humans

JAMES CAI

1/20/2017

Computational Statistics

Data Science

Medical Genetics

Outline

Additive, epistatic, and environmental effects through the lens of **evQTLs**

Exploiting **aberrant gene expression** in autism for gene discovery and diagnosis

Additive, epistatic, and environmental effects through the lens of **evQTLs**

Effect of common genetic variants on gene expression variability

Biological Evolution and Statistical Physics, pp. 56–83. Springer-Verlag, Berlin, 2002

- Digestive system disease
- Cardiovascular disease
- Metabolic disease
- Immune system disease
- Nervous system disease
- Liver enzyme measurement
- Lipid or lipoprotein measurement
- Inflammatory marker measurement
- Hematological measurement
- Body measurement
- Cardiovascular measurment
- Other measurement
- Response to drug
- Biological process
- Cancer
- Other disease
- Other trait

Expression QTLs (eQTLs)

Gene expression level as an "intermediate phenotype"

$$y_i = \mu + x_i \beta + g_i \alpha + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2)$$

Variation vs. Variability

New evidence: **phenotypic variability** (variance) is genetically controlled

FTO genotype is associated with <u>phenotypic variability</u> of body mass index (**Yang et al. Nature 2012**)

Inheritance beyond plain heritability: <u>variance-controlling</u> genes in *Arabidopsis thaliana* (**Shen et al. PLoS Genet 2012**)

Behavioral idiosyncrasy reveals genetic control of phenotypic variability (Julien et al. PNAS 2015)

Selection on <u>noise</u> constrains variation in a eukaryotic promoter (**Metzger** *et al. Nature* 2015)

Expression variability QTL – evQTL

i.e., genetic loci linked to or associated with expression variance

Hulse & Cai Genetics 2013

Detection of evQTLs

Linear regression model

$$y_i = \mu + x_i \beta + g_i \alpha + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2)$$

Double generalized linear model (DGLM) $y_i = \mu + x_i \beta + g_i \alpha + \varepsilon_i, \ \varepsilon_i \sim N(0, \sigma^2 \exp(g_i \theta))$

Smyth J R Statist Soc B 1989, Rönnegård & Valdar Genetics 2011

Genome scan for evQTLs

Data Sets:

1. Genotype data from the **1000G** project

2. RNA-seq data from the **Geuvadis** project

Detect cis-evQTLs (DGLM method) 28,494,473 tests performed (15,124 genes vs. common SNPs [MAF>15%])

17,949 significant SNP-gene pairs (Bonferroni corrected *P*<0.05) 1,304 genes

Expression variability QTL – **evQTL** i.e., genetic loci linked to or associated with expression variance

GTEx Portal

Jianhua Huang, STAT, TAMU

Tim Spector

AXIN2

Wang et al. (Cai) Genetics 2014

Wang et al. (Cai) Genetics 2014

Two distinct models explaining the creation of evQTLs

GxG (epistasis): the interaction between genotypes

GxE (destabilization): the interaction between genotype and environment

GxG (epistasis) model

Wang et al. (Cai) Genetics 2014

Unpublished

GxE (destabilization) model – repetitive qPCR

Select **two cell lines** from groups with large and small expression variability.

GxE (destabilization) model – repetitive qPCR

ATMIN (Rep3) 0.6 0.4 00 0.2 0 HG00097 HG00364

qRT-PCR assay was repeated 10 times for each sample.

GxE (destabilization) model – repetitive qPCR

An evQTL explained by the **GxG** (epistasis) model

An evQTL explained by the **GxG** (epistasis) model

GxE (destabilization) model – discordant expression between monozygotic (MZ) twins

GxE (destabilization) model – discordant expression between monozygotic (MZ) twins

Future plans

Circadian rhythm gene expression analysis (D. Earnest)

Single-cell gene expression analysis (A. Raj)

CRISPR/Cas9-based gene editing (D. Segal)

Summary

- Two distinct modes of action epistasis and destabilization.
 - Genetic variants work either interactively (GxG) or independently (GxE) to influence gene expression variance.

Exploiting aberrant gene expression in autism for discovery and diagnosis

Effect of **rare** genetic variants on gene expression variability

Mahalanobis distance (MD) is used to detect outliers

MD measures the level gene expression dispersion for a population

GENE SET 1

MD measures the level gene expression dispersion for a population

Sum of squared MD (SSMD) – Overall dispersion level of a gene set

 $SSMD = \sum i = 1 \uparrow M = MD \downarrow i \uparrow 2$

SSMD – overall dispersion level of a gene set

Gene sets (L-SSMD) that tend to be aberrantly expressed

MSigDB: molecular signatures database from the Broad Institute 31 gene sets

- G-protein coupled receptor activity
- Transmission of nerve impulse
- Ligand-gated ion channel transportation
- Cyclic guanosine monophosphate (cGMP) effects

Regulation of cellular processes and modulation of signal transduction

Gene sets (S-SSMD) that tend not to be aberrantly expressed

MSigDB: molecular signatures database from the Broad Institute 13 gene sets

- Homologous recombination repair of replication-independent double-strand breaks
- Transfer of a phosphate group to a carbohydrate substrate
- Cell cycle control

Fundamental molecular functions and metabolic pathways

SNP density in regulatory regions of L-SSMD genes in outlier individuals

ENCODE regulatory regions

- E: enhancer
- TSS: transcription start site
- T: transcribed region
- PF: predicted promoter flanking region
- CTCT: CTCF-enriched element
- R: repressed or low-activity region
- WE: weak enhancer or open chromatin cis-regulatory element

http://neuro.wisc.edu/faculty/rosenberg.asp

DE

DV

Anna Karenina Principle

"Happy families are all alike; every unhappy family is unhappy in its own way."

All healthy people are alike; each sick person is sick in his or her own way.

Leo Tolstoy 1828 – 1910

Chair Model

Brain RNA-seq:

- 47 ASD
- 57 controls

Gupta et al. (2014) Nat Commun 5:5748.

Coronin 1A facilitates formation of heterotrimeric or multiprotein complexes.

Synapsin II encodes neuronal phosphoprotein associated with the cytoplasmic surface of synaptic vesicles.

GSEA gene set	# of genes*	Top ΔSSMD gene
Metabolism and biosynthesis		
KEGG_PENTOSE_PHOSPHATE_PATHWAY	19/27	H6PD, PRPS2, PFKP
KEGG_STEROID_BIOSYNTHESIS	14/17	SC5DL, NSDHL, DHCR7
REACTOME_CHOLESTEROL_BIOSYNTHESIS	20/24	SQLE, HSD17B7, HMGCR
REACTOME_BRANCHED_CHAIN_AMINO_ACID_	16/17	DLD, HIBADH, MCCC2
CATABOLISM		
Immune/Inflammatory response		
BIOCARTA_LAIR_PATHWAY	4/17	SELPLG, C3, ITGB1
BIOCARTA_41BB_PATHWAY	12/17	MAPK8, ATF2, MAPK14
REACTOME_IL1_SIGNALING	25/39	CHUK, RBX1, BTRC
REACTOME_REGULATION_OF_IFNA_SIGNALING	6/24	STAT1, PTPN1, JAK1
Signaling pathway		
BIOCARTA_IGF1_PATHWAY	20/21	JUN, CSNK2A1, ELK1
PID_S1P_S1P2_PATHWAY	21/24	MAPK8, MAPK14, JUN
PID_HNF3APATHWAY (FOXA1/HNF3A TF network)	22/44	NDUFV3, PISD, FOS
REACTOME_ENERGY_DEPENDENT_REGULATION_	15/18	PRKAA1, CAB39, TSC1
OF_MTOR_BY_LKB1_AMPK		
Vitamins and supplements		
BIOCARTA_VITCB_PATHWAY	6/11	SLC2A3, COL4A2, SLC2A1
REACTOME_TETRAHYDROBIOPTERIN_BH4_SYNTHESIS_	9/13	GCHFR, PTS, AKT1

OF_MTOR_BY_LKB1_AMPK		
Vitamins and supplements		
BIOCARTA_VITCB_PATHWAY	6/11	SLC2A3, COL4A2, SLC2A1
REACTOME_TETRAHYDROBIOPTERIN_BH4_SYNTHESIS_	9/13	GCHFR, PTS, AKT1
RECYCLING_SALVAGE_AND_REGULATION		
Miscellaneous		
REACTOME_ACTIVATED_POINT_MUTANTS_OF_FGFR2	4/16	FGF9, FGFR2, FGF1
REACTOME_ACTIVATION_OF_THE_AP1_FAMILY_OF_	10/10	MAPK14, MAPK3, ATF2
TRANSCRIPTION_FACTORS		
REACTOME_INWARDLY_RECTIFYING_K_CHANNELS	20/31	KCNJ10, KCNJ4, GNG4
REACTOME_G2_M_CHECKPOINTS	22/45	MCM2, RFC5, RPA2

Search for gene expression markers for early diagnosis

Search for gene expression markers for early diagnosis

(**M@21)000**0494500

(**■***N*@3)=2.2177*e*+11

(**■***N*@4)=6.0971*e*+14

(**■***N*@5)=1.3409*e*+18

http://crab-lab.zool.ohiou.edu/kevin/

Search for gene expression markers for early diagnosis

{*EVI2B*, *MYLIP*, *OR11G2*, *TSPAN16*, *ZNF594*}

{*EVI2B*, *MYLIP*, *OR11G2*, *TSPAN16*, *ZNF594*}

Gene Set II

Receiver Operating Characteristic (ROC) Curve

Gene Set I

Gene Set II

Gene Set III

Common dysregulated gene sets between AUT, SCZ, and BPD

Guan et al. (Cai) Unpublished
Summary

 Detecting aberrant gene expression and identifying underlying genes and mutations represent a new discovery and diagnostic strategy for genetically heterogeneous disorders such as autism.

