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Motivation

I social networks, connectomics, biological networks, gene
circuits, internet networks (Goldenberg, Zheng, Fienberg &
Airoldi, 2010)

I One typical sparsity pattern: groups of nodes with dense
within group connections and sparser connections between
groups.



Mathematical Formulation

I Observable: G = (V ,E ) undirected / directed graph

I V = {1, 2, . . . , n} arbitrarily labelled vertices

I A(n × n) adjacency matrix encoding edge information

I

Aij =

{
1 if there is an edge (relationship) between (from) i and j

0 otherwise

I We assume Aii = 0 (but self loops can be allowed)



Adjacency Matrix (undirected)

Nodes in order random order



Community detection

I Goal:

1. Learn the number of communities (k) and

2. Cluster the nodes which share a similar connectivity pattern



Biological networks: Human connectomics data

I Diffusion Tensor Imaging (DTI) provides a reliable
connectivity measure.

I An illustration of a standard pipeline (Hagmann, 2005) of
extracting diffusion MRI (dMRI) to connectomics data.

I Goal: Cluster the 68 brain regions (34: LH, 34: RH) based on
connections.

Figure: Pipeline



Existing methods for community detection

I Large literature on community detection in networks

I Graph-theoretic, Modularity, Spectral, Maximum likelihood
and Bayesian

I Nowicki & Snijders (2001), Newman & Girvan (2004), Zhao,
Levina & Zhu (2011), Rohe, Chatterjee & Wu (2011), Chen,
Bickel & Levina (2013), Abbe & Sandon (2015) . . .



Existing methods for community detection

I Assume knowledge of the number of communities (Airoldi et
al., 2009; Bickel and Chen, 2009; Amini et al., 2013) or
estimate it apriori using either of cross-validation, hypothesis
testing, BIC or spectral methods (Daublin et al., 2008; Latouche

et al., 2012; Wang and Bickel, 2015; Lei, 2014; Chen & Lei, 2014;

Le and Levina, 2015)

I 2-stage procedures ignore uncertainty in the first stage and
are prone to increased misclassification

I Existing Bayesian methods for unknown k: both conceptual
and computational issues.

I Our goal is to propose a coherent probabilistic framework with
efficient sampling algorithms which allows simultaneous
estimation of the number of clusters and the cluster
configuration.



Stochastic Block Model (Holland et al., 1983)

I A parsimonious model favoring block structure

I Aij ∼ Bernoulli(θij), with θij characterized by community
memberships

I Nodes belong to one of k communities, let zi ∈ {1, . . . , k}
denote the community membership of the ith node

I Q = (Qrs) ∈ [0, 1]k×k , with Qrs the probability of an edge
from any node i in cluster r to any node j in cluster s

I

Aij ∼ Bernoulli(θij), θij = Qzizj

I Assume P(zi = j) = πj , j = 1, . . . , k

P(Aij = 1) =
k∑

r=1

k∑
s=1

Qrsπrπs = πTQπ



Generalization to Random graph models

I Under node exchangeability assumption Aldous & Hoover,
1981 showed that there exists ξi ∼ U(0, 1) and a graphon
h : [0, 1]× [0, 1]→ [0, 1] such that

P(Aij = 1 | ξi = u, ξj = v) = h(u, v)

I SBM: h is constant Qr ,s on block (r , s) of size πr × πs .

Graphon of SBM



Bayesian formulation

I General framework for prior specification: With
z = (z1, . . . , zn)

(z , k) ∼ Π

Qrs
ind∼ U(0, 1), (r , s = 1, . . . , k),

Aij | z ,Q, k
ind∼ Bernoulli(θij), θij = Qzizj

I Π is a probability distribution on the space of partitions of
{1, . . . , n}

I Nowicki and Snijders (2001): Assumes known k , and

zi | π ∼ Multinomial(π1, . . . , πk)

π ∼ Dir(α/k , . . . , α/k)

I Carvalho et al 2015: Assumes unknown k through Chinese
restaurant process.



Carvalho et al 2015: CRP based prior for (z , k)

I A possible model for zi :

zi | π ∼ Multinomial(π1, . . . , πk)

π ∼ Dir(α/k , . . . , α/k)

I As k →∞, Ishwaran and Zarepour (2002) showed that the
distribution of zi s:

p(zi = c | z−i ) ∼
{
|c | at an existing table c
α if c is a new table

where z−i = (z1, . . . , zi−1, zi+1, . . . , zn)



Some discussion on CRP

I Partitions sampled from the CRP posterior tend to have
multiple small transient clusters.

I Let t be the number of clusters (tables) s = (s1, . . . , st)
denotes the vector of cluster sizes, then

P(S = s) = V CRP
n (t)

n!

t!
s−1
1 ...s−1

t

I Probability of small, transient clusters high

I inconsistent estimation of the number of clusters (Miller and
Harrison, 2015)



Mixture of finite mixtures (MFM)

Mixture of finite mixture (MFM) model (Miller & Harrison,
2016+):

zi | π, k ∼ Multinomial(π1, . . . , πk)

π | k ∼ Dir(γ, ..., γ)

k ∼ p(·),where p(·) is a proper p.m.f on 1,2,...

P(S = s) =
Vn(t)

Γ(γ)t
n!

t!

t∏
i=1

sγ−1
i



Modified Chinese restaurant process (m-CRP)

p(zi = c | z−i ) ∼

 |c |+ γ at an existing table c
Vn(t + 1)

Vn(t)
γ if c is a new table

Vn(t + 1): pre-stored sequences



Complete prior specification (MFM-SBM)

I The model along with the prior specified above can be
expressed hierarchically as follows:

k ∼ p(·),where p(·) is truncated Poisson {1, . . . , n}

Qrs
ind∼ Unif(0, 1), r , s = 1, . . . , k,

π ∼ Dirichlet(γ, . . . , γ) ,

P(zi = j | π) = πj , i = 1, . . . , n; j = 1, . . . , k

Aij | z ,Q
ind∼ Bernoulli(θij), θij = Qzizj .



MCMC algorithm

I Marginalization of k possible due to modified CRP

I No need to perform RJMCMC / allocation samplers

I Efficient Gibbs sampler updates for z and Q



Data Generation

I Decide the number of communities k and the number of
subjects n.

I Set the true cluster configuration of the data
z0 = (z01, . . . , z0n) : z0i ∈ {1, . . . , k}.

I Set values for edge probability matrix Q = (Qrs) ∈ [0, 1]k×k .

Q =


p 0.1 . . . 0.1

0.1 p . . . 0.1
...

...
. . .

...
0.1 0.1 . . . p


The smaller p is, the more vague the block structure

I Finally, generate the adjacency matrix A from Bernoulli(Qzizj ).

I Use Rand Index (# of “agreement pairs” /
(n
2

)
) to compare

estimation of z



Comparison with existing methods

I Hyperparameters: use γ = 1, truncated Poisson(1)

I Investigate mixing and convergence vs. CRP-SBM.

I Compare estimation of both z and k



Mixing / convergence comparison

Figure: MFM-SBM, balanced network, 100 nodes in 3 communities

Figure: MFM-SBM, unbalanced network, 100 nodes in 3 communities.



Mixing / convergence comparison

Figure: MFM-SBM, unbalanced network, 200 nodes in 5 communities.

Figure: CRP-SBM, balanced network, 100 nodes in 3 communities.



Comparison on estimating (k , z)

I Two settings:

1. Well-specified setting: θij = Qzi ,zj

2. Misspecified setting: θij = wiwjQzi ,zj , 30% of the nodes have
wi = 0.7, remaining wi = 1.

I (k , z) estimated using Zhang, Pati & Srivastava, 2015.

I Comparison based on the N = 100 replicated datasets

I Competitors based on spectral properties of certain graph
operators, namely the i) non-backtracking matrix (NBM) ii)
Bethe Hessian matrix (BHM) → Le & Levina, 2016 iii)
Leading eigen vector method (LEM) Newman, 2006 iv)
Hierarchical modularity measure (HMM) Blondel et al 2008 v)
B-SBM (allocation based sampler version of our method)



Specified case: Comparison on estimating k

Figure: 2 communities and same size, left to right: our method,
competitor I, competitor II



Specified case: Comparison on (z, k) estimation

(k, p) MFM-SBM LEM HMM B-SBM
k = 2, p = 0.50 0.99 (1.00) 1.00 (0.99) 1.00 (1.00) 1.00 (1.00)
k = 2, p = 0.24 0.97 (0.84) 0.35 (0.79) NA (NA) 0.61 (0.78)
k = 3, p = 0.50 1.00 (1.00) 0.67 (0.96) 1.00 (0.99) 0.91 (0.99)
k = 3, p = 0.33 0.97 (0.93) 0.85 (0.79) 0.78 (0.89) 0.54 (0.93)

Table: The value outside the parenthesis denotes the proportion of
correct estimation of the number of clusters out of 100 replicates. The
value inside the parenthesis denotes the average Rand index value when
the estimated number of clusters is correct.



Misspecified case: Comparison on estimating k

Figure: 2 communities and same size, left to right: our method,
competitor I, competitor II



Misspecified case: Comparison on (z, k) estimation

(k, p) MFM-SBM LEM HMM B-SBM
k = 2, p = 0.50 0.90 (1.00) 1.00 (1.00) 0.99 (1.00) 0.89 (1.00)
k = 2, p = 0.24 0.93 (0.80) 0.21 (0.73) NA (NA) 0.54 (0.57)
k = 3, p = 0.50 0.96 (0.99) 0.75 (0.94) 1.00 (0.99) 0.87 (0.99)
k = 3, p = 0.33 0.93 (0.88) 0.78 (0.73) 0.47 (0.80) 0.38 (0.82)

Table: The value outside the parenthesis denotes the proportion of
correct estimation of the number of clusters out of 100 replicates. The
value inside the parenthesis denotes the average Rand index value when
the estimated number of clusters is true.



Clustering consistency

I Very rich literature in Bayes theory on parameter estimation

I Considerably smaller literature on estimation of discrete
configurations (Johnson & Rossell, 2012, Narisetty & He,
2014; etc)

I No general results on clustering consistency in Bayes
paradigm

I There are a few frequentist results on consistent community
detection (Abbe & Sandon (2015; 2016), Bickel and Chen,
2009; Dembo et al 2015, Mossel et al 2014) under the planted
partition model

I Generally assumes Q and k0 are known



Mode of convergence to the true community assignment

I Community assignments identifiable up to arbitrary labeling of
the community indicator within each community.

I Consider d : minimum Hamming distance on equivalence
classes of community assignments which are identical modulo
labeling / n



Clustering consistency for sparse networks

I (A1) Assume k0 = 2 with roughly equal sized communities.
I (A2) Network is homogeneous, i.e.

Q0 =

[
p q
q p

]
with 0 ≤ q < p ≤ 1.



Clustering consistency: Main results

Define I = D
(
p||q

)
, the Renyi divergence of order 1

2 between p
and q.

Theorem
Under (A1) and (A2), model fitted with k = 2 & γ = 1

E[d(z , z0) | A] ≤ exp

[
− {1 + o(1)}nI

2

]
(1)

I This is the optimal rate of convergence Zhang & Zhou,
2016+.

Theorem
Under (A1) and (A2), model fitted with a Poisson prior on k

E[d(z , z0) | A]→ 0 as n→∞. (2)



Interpretation of the result: Sparse networks

I Note that if p = a
n and q = b

n

nI = nD

(
a

n

∥∥∥∥bn
)
� n

(a− b)2

an
=

(a− b)2

a
.

I When k0 is known, consistent community detection when
(a−b)2

a →∞.

I If nI = 2ρ log n, then we roughly misclassify n1−ρ nodes.

I If ρ > 1, exact recovery is possible asymptotically.

I Partial recovery for ρ ≤ 1.



Proof technique overview

We look at the posterior expected loss respect to distance d on

E[d(z , z0) | A] =
∑
r

r

∑
z:d(z,z0)=r exp{`(z | A)− `(z0 | A)}{π(z)/π(z0)}∑

z exp{`(z | A)− `(z0 | A)}{π(z)/π(z0)}

≤
∑
r

r
∑

z:d(z,z0)=r

exp{`(z | A)− `(z0 | A)}{π(z)/π(z0)}.

I small r : Difficult to “separate” log-marginal likelihood (LML) for z
and z0, but |z : d(z , z0) = r | is small (low model complexity)

I larger r : Easy separation between LMLs, but higher model
complexity



Separation analysis of LMLs (fixed k)

I For any z , z1, z2, let

nr ,s(z) =
∑
i<j

1(zi = r , zj = s),

ar ,s(z) =
∑
i<j

aij1(zi = r , zj = s)

nr ,s;l,t(z
1, z2) =

∑
i<j

1(z1i = r , z1j = s)1(z2i = l , z2j = t)

for 1 ≤ r , s, l , t ≤ k .

I log marginal likelihood: for h(x) = x log x + (1− x) log(1− x)

`(A | z) =
∑
r ,s

nr ,s(z)h

{
ar ,s(z)

nr ,s(z)

}
− log

∑
r ,s

{nr ,s(z) + 1}

I Boxed part: ˜̀(A | z)



Separation analysis of LMLs (fixed k)

Figure: Plot of h(x) = x log x + (1− x) log(1− x) for x ∈ [0, 1]. h is
symmetric about 1/2 where it attains its minima on [0, 1].



Separation analysis of LMLs (fixed k)

`(A | z0)− `(A | z) �
{

˜̀(A | z0)− ˜̀
E (A | z0)

}
−
{

˜̀(A | z)− ˜̀
E (A | z)

}︸ ︷︷ ︸
2 stochastic terms

+
{

˜̀
E (A | z0)− ˜̀

E (A | z)
}︸ ︷︷ ︸

non-stochastic term

I ar ,s;l ,t(z , z0) ∼ Bernoulli(nr ,s;l ,t(z , z0),Q0
lt), consider the

“population” versions of ˜̀(A | z) and ˜̀(A | z0) as

˜̀
E (A | z) =

∑
r ,s;l ,t

nr ,s;l ,t(z , z0)h

{∑
l ,t nr ,s;l ,t(z , z0)Q0

lt∑
l ,t nr ,s;l ,t(z , z0)

}
,

˜̀
E (A | z0) =

∑
r ,s;l ,t

nr ,s;l ,t(z , z0)h(Q0
lt).



Separation analysis of LMLs (fixed k)

I Non-stochastic term: Since h is a convex function,

h

{∑
l,t nr ,s;l,t(z , z0)Q0

lt∑
l,t nr ,s;l,t(z , z0)

}
<

1∑
l,t nr ,s;l,t(z , z0)

∑
l,t

nr ,s;l,t(z , z0)h(Q0
lt)

I Stochastic term: Since h is non-Lipschitz near boundary, we use
stronger non-linear large-deviation theory



Separation analysis of LMLs (fixed k)

I An example:

I

˜̀
E (z | A)− ˜̀

E (z0 | A) ≤ −Cn × I(p||q)



Separation analysis of LMLs (fixed k)

I For fixed k0, when d(z , z0) = r ,

˜̀
E (z | A)− ˜̀

E (z0 | A) ≤ −C1nr × I(p||q)

with high probability.

I Also for fixed k0

max
z:d(z,z0)≤r

{
log π(z)− log π(z0)

}
≤ C2r

I The above two observations conclude the proof.



Real data examples



Human connectomics data

I Goal: Cluster the 68 regions (34: LH, 34: RH) based on
connections

I Biological importance of the clusters: Brain activation regions
(Smith et al 2015)

I Connections between left and right hemisphere are believed to
have positive impact on cognitive ability

I Analyze connectomes of two subjects with different
inter-hemisphere connections



Subjects 1 and 8

Adjacency Matrix (Sub 1)

B̂ij = 1(ẑi = ẑj): MFM-SBM
(3-LH+ 3-RH)

Adjacency Matrix (Sub 8)

B̂: MFM-SBM
(3-LH+3RH+1Mixed)



Conclusion

I For subjects 1 and 8, clusters obtained from MFM-SBM in
LH/ RH involve

1. Sensory and motor regions
2. insula and dorsal attention regions
3. cerebellar regions

I Regions conform with Smith et al 2015 Nature Neuroscience
paper using FMRIB Software Library

I For subject 8, one cluster has nodes from insular region of
both LH and RH

I B-SBM performs closely, LEM & HMM favored smaller
clusters



Dolphin social network data: Reference configuration

I 62 dolphins living off Doubtful sound, NZ from 1994-2001

Figure: Reference configuration obtained from Lusseau et al 2003



Dolphin social network data: MFM-SBM

Figure: Perfect clustering except one subject

MFM-SBM NBM BHM LEM HMM B-SBM
2 2 2 5 5 3

Table: Estimated number of clusters for dolphin data



Dolphin social network data: Comparison

Adjacency Matrix

B̂: MFM-SBM

B̂ij = 1(z0i = z0j ): Reference

B̂: HMM



Discussion & Ongoing directions on connectomics data

I MFM-SBM has good performance in simulated and real-data
examples.

I Model for population of connectomes

I Allow subject specific deviations, adjust for covariates

I Can potentially fit increasingly complex models

I Model adequacy checks very important
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I Probabilistic community detection with unknown number of
communities, http://arxiv.org/abs/1602.08062 with Anirban
Bhattacharya and Junxian Geng, under revision at the Journal
of the American Statistical Association.



Thank You !



Demonstrating uncertainty

Figure: true k = 2 Figure: true k = 3

I substantial uncertainty when the community structure is not
prominent

I MFM-SBM of avoids tiny extraneous communities as opposed
to CRP type models.



Different types of SBMs



Strength in Marginal likelihood (k0 = 1 vs k = 2)

I Π(k = k0 | A)→ 1 due to Allman et al 2009.

I An example:

I log marginal likelihood: for h(x) = x log x + (1− x) log(1− x)

`(A | z) =
∑
r ,s

nr ,s(z)h

{
ar ,s(z)

nr ,s(z)

}
− log

∑
r ,s

{nr ,s(z) + 1}

I · comes to the rescue ! here as ˜̀
E (z | A) = ˜̀

E (z0 | A).

I exp{ · } = 1/n3 for z and 1/n2 for z0.


