

Intrinsically Bayesian Robust Operators and Optimal Experimental Design Based on Uncertainty Quantification

Edward R. Dougherty

Department of Electrical and Computer Engineering Texas A&M University

The Core Engineering Problem: Synthesis

- The fundamental problem: given a system, synthesize an operator to operate on the system in a desirable manner.
 - Classification: Make decisions.
 - Filtering (regression): Make optimal estimates; for instance, given a degraded signal, estimate the true signal.
 - Control: Alter the dynamical behavior of the system.
- Synthesis starts with a mathematical theory constituting the relevant scientific knowledge and the theory is used to derive an optimal operator for some objective.
- Science constructs models; engineering operates on them.

Synthesis Protocol

- 1. Construct the mathematical model.
- 2. Define a class of operators.
- 3. Define the optimization problem via a cost function.
- 4. Solve the optimization problem.

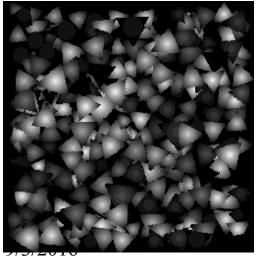
Wiener Filtering

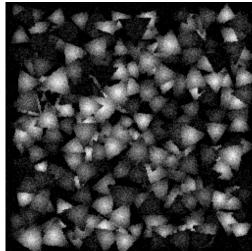
- 1. Model: two jointly WSS random processes, true signal *Y* and observation signal *X*.
 - Autocorrelation, E[X(t)X(t')], is a function of t t'
- 2. Operator class consists of linear filters on the observed signal: $\psi(X)(t) = \sum_{a \le s \le b} g(t, s)X(s)$
- 3. Cost is the mean-square error between *Y* and $\psi(X)$: $MSE = \sum_{-\infty \le t \le \infty} |Y(t) - \psi(X)(t)|^2$
- 4. Optimization: the Fourier transform of the optimal g is given in terms of the power spectral density of the observed signal and the cross power spectral density, which are the Fourier transforms of the auto- and cross-correlation functions, respectively:

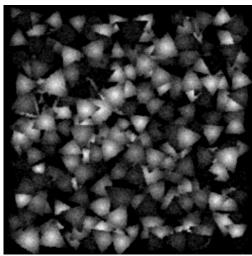
$$G(\omega) = S_{YX}(\omega) / S_X(\omega)$$

Filtering Blurred Signal + Noise

- Filter model
 - Original signal: s
 - Blurred signal + white noise: B(s) + n
 - Filtered noisy signal: $\psi[B(s) + n]$
- Linear optimization problem
 - Find ψ to minimize distance between $\psi[B(s) + n]$ and s



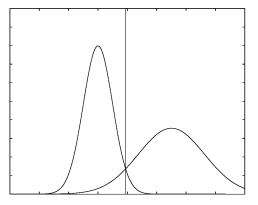




ch. 22b. camarca

Optimal Classification

- 1. Construct the feature-label distribution.
- 2. The operators consist of classifiers (decisions).
- 3. The cost is classifier error.
- 4. An optimal operator is given by a Bayes classifier.
- Class conditional densities: $f(\mathbf{x}|0)$ and $f(\mathbf{x}|1)$.

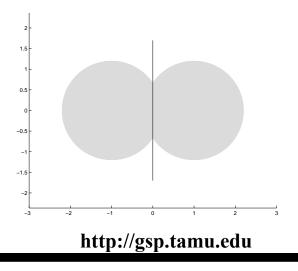


• <u>Bayes Classifier</u> $\psi_{\text{Bay}}(\mathbf{x}) = 1$ if $f(\mathbf{x}|1) \ge f(\mathbf{x}|0)$; $\psi_{\text{Bay}}(\mathbf{x}) = 0$ if $f(\mathbf{x}|1) < f(\mathbf{x}|0)$.

http://gsp.tamu.edu

Gaussian Model

- 1. Feature-label distribution: two Gaussian classconditional distributions.
- 2. The operators consist of classifiers (decisions).
- 3. The cost is classifier error.
- 4. An optimal operator is given by a Bayes classifier.
 - Linear discriminant for equal covariance matrices.
 - Quadratic discriminant for unequal covariance matrices.



Uncertainty Class of Models

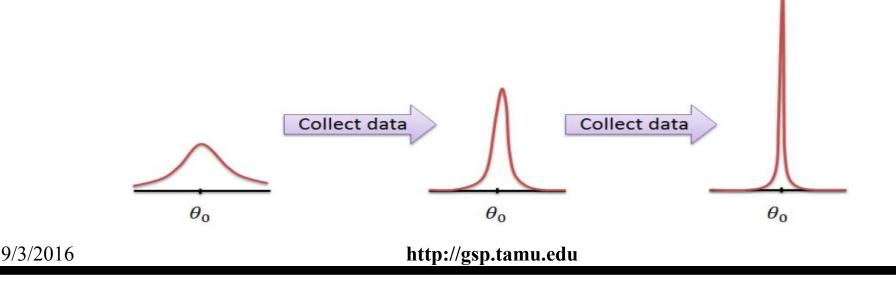
- With complex systems, model parameters cannot be accurately estimated due to lack of data Small Data.
- Partial knowledge provides *uncertainty class* of models.
 - $\Theta = \{\theta_1, \theta_2, \dots, \theta_m\}$
 - Model uncertainty is not about randomness within a model, but that we can only identify a class of possible models.
- Example for filtering:
 - Model: $X(t) = \sin(at) + N(t); N(t) \sim N(0, \sigma^2).$
 - Uncertain model: σ unknown.
- Example for classification:
 - Model: $f(\mathbf{x}|0) \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma})$.
 - Uncertain model: μ or Σ , possibly both, unknown.

Prior and Posterior Distributions

- Assume is a *prior distribution* $\pi(\theta)$ governing the likelihood that some model θ is the full (true) model.
 - Prior distribution encodes our belief concerning the likelihood that any θ corresponds to the full model.
 - $-\pi(\theta)$ may be often uniform.
 - Prior construction requires transforming knowledge into a form that is relevant to modeling uncertainty.
- Given a random sample (new data) from the full model, we deduce the posterior distribution $\pi^*(\theta) = \pi(\theta/S)$.
 - The posterior distribution characterizes our understanding of the uncertainty class: prior knowledge + data.

Prior + Data = Posterior

- The prior distribution represents the state of our knowledge prior to the data; the posterior represents the state of our knowledge after joining the prior with the data.
 - Data reduces the uncertainty in the prior less variance.



Intrinsically Bayesian Robust Operator

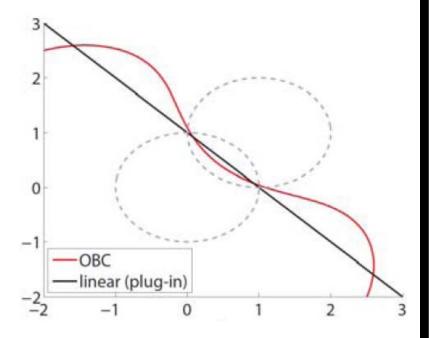
- An IBR operator minimizes the expected value of the cost among all operators in a class Ψ :
- $E_{\Theta}[C_{\theta}(\psi_{\text{IBR}})] = \min\{E_{\Theta}[C_{\theta}(\psi)], \psi \in \Psi\}.$
- $E_{\Theta}[C_{\theta}(\psi)] = C_{\theta 1}(\psi)\pi(\theta_1) + C_{\theta 2}(\psi)\pi(\theta_2) + \dots + C_{\theta m}(\psi)\pi(\theta_m)$
- $E_{\Theta}[C_{\theta}(\psi)] = \int_{\Theta} C_{\theta}(\psi) \pi(\theta) d\theta$
- If the operator class is finite, then the minimum is over a finite set.

Optimal Bayesian Classifier

- *Optimal Bayesian classifier* (*OBC*) uses the posterior. – Gaussian model: $\pi(\mu, \Sigma) \rightarrow \pi^*(\mu, \Sigma) = \pi(\mu, \Sigma \mid S)$
- $E_{\Theta}[\varepsilon_{\theta}[\psi_{OBC}]] = \min\{E_{\Theta}[\varepsilon_{\theta}[\psi]], \psi \in \Psi\}$
- *Effective* class conditional densities:
 - $f(\mathbf{x}|0; \Theta) = E_{\Theta}[f(\mathbf{x}|0; \Theta)];$ expectation with respect to π^*
 - $f(\mathbf{x}|1; \Theta) = E_{\Theta}[f(\mathbf{x}|1; \Theta)];$ expectation with respect to π^*
- <u>Bayes Classifier</u> $\psi_{OBC}(\mathbf{x}) = 1$ if $f(\mathbf{x}|1;\Theta) \ge f(\mathbf{x}|0;\Theta)$; $\psi_{OBC}(\mathbf{x}) = 0$ if $f(\mathbf{x}|1;\Theta) < f(\mathbf{x}|0;\Theta)$.

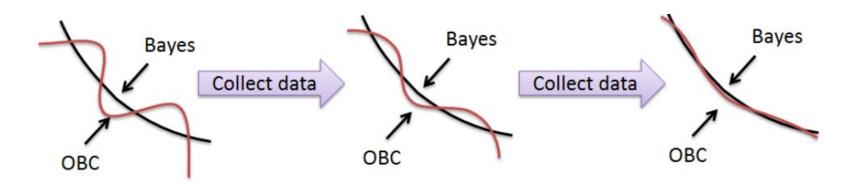
OBC for Gaussian Model

- Polynomial Optimal Bayesian Classifier (red line)
 - Dotted lines are level curves for the Gaussian classconditional densities corresponding to the expected means and (equal) covariances for a given posterior.
 - Black solid line is linear classifier corresponding to the Bayes classifier for the expected mean and covariance parameters (naive).



Convergence of the OBC

In the Gaussian and multinomial models, as n → ∞ the OBC converges to the Bayes classifier for the true feature-label distribution.



Synthesis Protocol with Uncertainty

- 1. Construct the mathematical model.
- 2. Define a class of operators.
- 3. Define optimization problem via a cost function.
- 4. Solve optimization via model characteristics.
- 5. Identify the uncertainty class.
- 6. Construct a prior distribution.
- 7. State the IBR optimization problem.
- 8. Construct the effective characteristics.
- 9. Prove that IBR optimization is solved by replacing the model characteristics by effective characteristics.

IBR Wiener Filtering

- Uncertainty class: jointly WSS random processes.
- Optimization: minimize $E_{\Theta}[MSE_{\theta}]$ between true signal and filtered observation signal.
 - Expected because the signals depend on θ .
- 4. *Effective power spectra* are Fourier transforms of the expected auto- and cross-correlation functions: $S_{\Theta,X}(\omega) = \mathcal{F}[E_{\Theta}[r_{\theta,X}]](\omega)$ and $S_{\Theta,YX}(\omega) = \mathcal{F}[E_{\Theta}[r_{\theta,YX}]](\omega)$. The Fourier transform of the IBR weighting function is

$$G_{\Theta}(\omega) = S_{\Theta, YX}(\omega) / S_{\Theta, X}(\omega)$$

IBR Wiener Protocol

- 5. The uncertainty class is defined by the uncertain parameters in the autocorrelation and cross-correlation functions.
- 6. A prior/posterior distribution is constructed for these parameters.
- 7. IBR optimization: minimize the expected MSE.
- 8. Effective characteristics: effective power spectra.
- 9. Prove that the IBR optimization problem is solved by replacing the model characteristics by the effective characteristics.

Measuring Uncertainty

- Uncertainty in parameters that do not affect operator design is no concern.
- Requirements of an uncertainty measure
 - Measure should be based on the objective of the model.
 - Uncertainty should be quantified in terms of the expected cost it induces with respect to the operator class.
- Entropy does not satisfy these requirements.

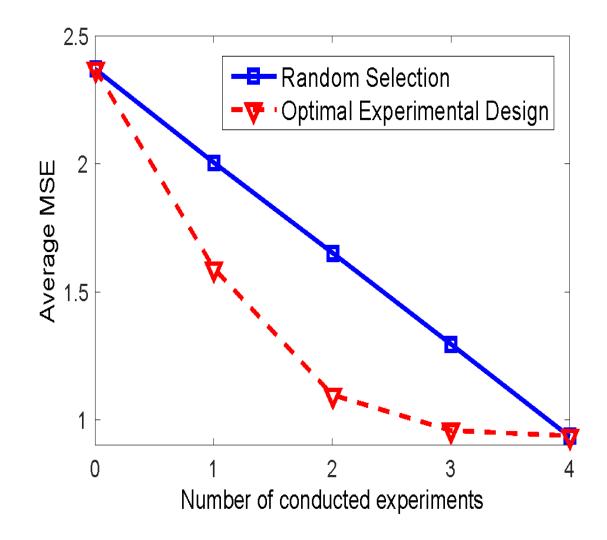
Objective Cost of Uncertainty

- IBR optimality: $E_{\Theta}[C_{\theta}(\psi_{\text{IBR}})] \leq E_{\Theta}[C_{\theta}(\psi)]$ for any ψ .
- If ψ_{θ} is optimal for θ , then $C_{\theta}(\psi_{\theta}) \leq C_{\theta}(\psi_{\text{IBR}})$.
- For any $\theta \in \Theta$, the *objective cost of uncertainty* (*OCU*) relative to θ is OCU(θ) = $C_{\theta}(\psi_{\text{IBR}}) - C_{\theta}(\psi_{\theta})$.
- OCU for the uncertainty class, OCU(Θ), is the OCU relative to the full model, which is not known.
- *Mean objective cost of uncertainty* (MOCU):
- $MOCU(\Theta) = E_{\Theta}[OCU(\theta)] = E_{\Theta}[C_{\theta}(\psi_{IBR}) C_{\theta}(\psi_{\theta})]$

Optimal Experimental Design

- If MOCU ≈ 0 , then, on average, $C_{\theta}(\psi_{\text{IBR}}) \approx C_{\theta}(\psi_{\theta})$.
 - If prior is concentrated around full model (plus some regularity conditions), expect IBR to be close to optimal.
- To get a new posterior, among the set of possible experiments, choose the experiment with minimum expected remaining MOCU given the experiment.
 - For each possible experiment, compute remaining MOCU for all possible outcomes, average these MOCUs, take the minimum of these averages, and do experiment. Iterate.
- Result *optimal experimental design* relative to the cost function and the objective uncertainty.

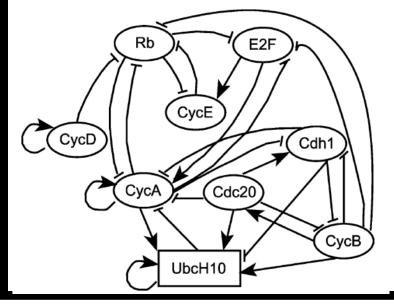
Optimal versus Random – Wiener



http://gsp.tamu.edu

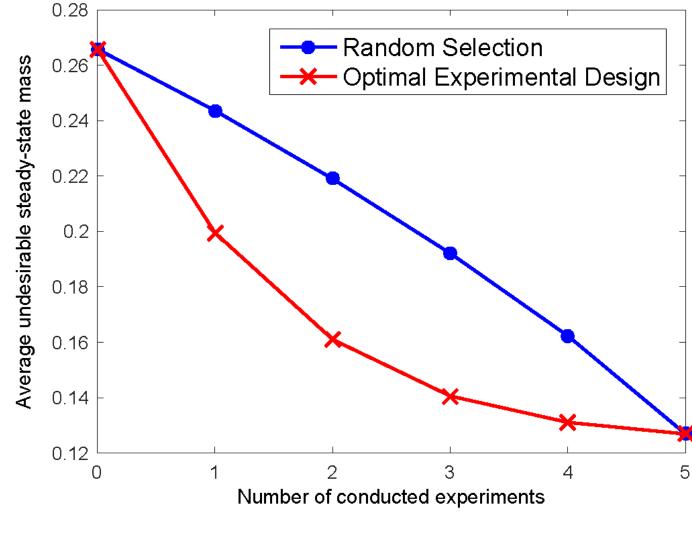
Uncertain Mammalian Cell Cycle Network

- Binary model of mammalian cell cycle.
 - Construct is network model, plus assumption of binary relations.
 - Data are used to estimate model relations.
 - Uncertainty class from multiple possible constructs or relations.
 - Objective: if Rb = CycD = 0, the cell cycles in the absence of a growth factor, so alter logic.



logic.			_
10510.	Product	Predictors	
	CycD	Input	
	Rb	$(\overline{CycD} \land \overline{CycE} \land \overline{CycA} \land \overline{CycB})$	
	E2F	$(\overline{Rb} \land \overline{CycA} \land \overline{CycB})$	
	CycE	$(E2F \land \overline{Rb})$	
	CycA	$\frac{(E2F \land \overline{Rb} \land \overline{Cdc20} \land (\overline{Cdh1 \land Ubc})) \lor (CycA \land \overline{Rb} \land \overline{Cdc20} \land (\overline{Cdh1 \land Ubc}))}{Cdc20 \land (\overline{Cdh1 \land Ubc}))}$	
	Cdc20	CycB	
	Cdh1	$(\overline{\mathrm{CycA}} \land \overline{\mathrm{CycB}}) \lor (\mathrm{Cdc20})$	
	Ubc	$(\overline{Cdh1}) \lor (Cdh1 \land Ubc \land (Cdc20 \lor CycA \lor CycB))$	
	CycB	$(\overline{Cdc20} \land \overline{Cdh1})$	_
http://gsp.	tamu.ed	u 2	2

Optimal versus Random – Gene Network



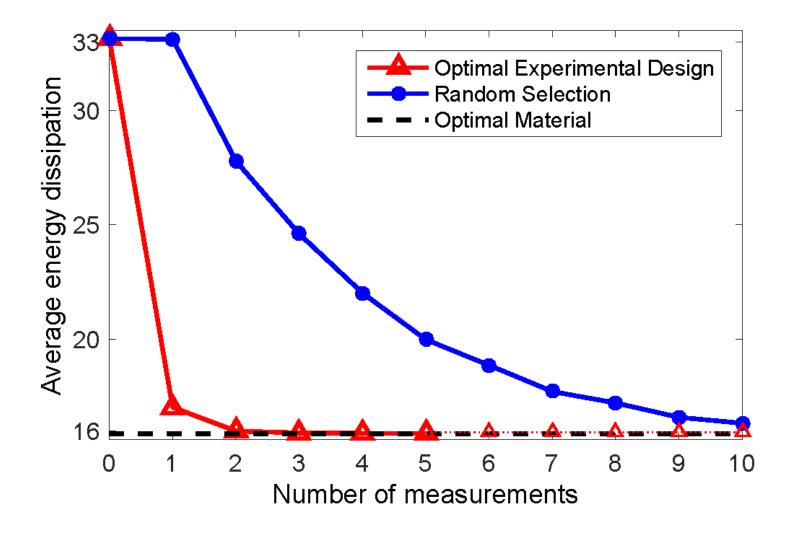
http://gsp.tamu.edu

Design Shape Memory Alloy

- Goal: Design a shape memory alloy with low dissipation energy.
 - Dissipate little energy (heat) under load.
- Problem: Design a material with the lowest energy dissipation at a specific temperature where the aim of the experimental design is to suggest the best dopant (added impurity) and concentration for the next measurement.

rocessing Laboratory

Optimal versus Random – Materials



Issues for Design under Uncertainty

- Prior Construction
 - Transforming scientific knowledge into constraints and probabilistic knowledge relevant to the design problem.
- Computation especially for non-Gaussian models
 - Efficient MCMC algorithms.
 - Efficient architectures.
 - Model compression while keeping relevant information.
- Building models compatible with experiments.
- There is no notion of scientific validity because there is no actual model to experimentally validate.
 - Modeling our knowledge serves as a practical construct from which to derive an "optimal" action in the world.