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The Core Engineering Problem: Synthesis

• The fundamental problem: given a system, synthesize an 
operator to operate on the system in a desirable manner.
– Classification: Make decisions.
– Filtering (regression): Make optimal estimates; for instance, 

given a degraded signal, estimate the true signal.
– Control: Alter the dynamical behavior of the system.

• Synthesis starts with a mathematical theory constituting 
the relevant scientific knowledge and the theory is used 
to derive an optimal operator for some objective. 

• Science constructs models; engineering operates on 
them.
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Synthesis Protocol

• 1. Construct the mathematical model.  
• 2. Define a class of operators.
• 3. Define the optimization problem via a cost function.
• 4. Solve the optimization problem.
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Wiener Filtering
• 1. Model: two jointly WSS random processes, true signal Y and 

observation signal X. 
– Autocorrelation, E[X(t)X(t ’)], is a function of t − t’

• 2. Operator class consists of linear filters on the observed signal: 
(X)(t) = ∑a ≤ s ≤ b g(t, s)X(s)

• 3. Cost is the mean-square error between Y and (X):
MSE =∑−∞ ≤ t ≤ ∞ |Y(t) − (X)(t)|2

• 4. Optimization: the Fourier transform of the optimal g is given in 
terms of the power spectral density of the observed signal and the 
cross power spectral density, which are the Fourier transforms of 
the auto- and cross-correlation functions, respectively:

• G() = SYX()/SX()
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Filtering Blurred Signal + Noise
• Filter model

– Original signal: s
– Blurred signal + white noise: B(s) + n
– Filtered noisy signal: [B(s) + n]

• Linear optimization problem
– Find  to minimize distance between [B(s) + n] and s
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Optimal Classification

• 1. Construct the feature-label distribution.
• 2. The operators consist of classifiers (decisions).
• 3. The cost is classifier error.
• 4. An optimal operator is given by a Bayes classifier.

• Class conditional densities:                                        
f(x|0) and f(x|1).

• Bayes Classifier Bay(x) = 1 if f(x|1)  f(x|0);
Bay(x) = 0 if f(x|1) < f(x|0). 
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Gaussian Model

• 1. Feature-label distribution: two Gaussian class-
conditional distributions.

• 2. The operators consist of classifiers (decisions).
• 3. The cost is classifier error.
• 4. An optimal operator is given by a Bayes classifier.

– Linear discriminant for equal covariance matrices.
– Quadratic discriminant for unequal covariance matrices.
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• With complex systems, model parameters cannot be 
accurately estimated due to lack of data – Small Data.

• Partial knowledge provides uncertainty class of models.
–  = {1, 2,…, m}
– Model uncertainty is not about randomness within a model, 

but that we can only identify a class of possible models.
• Example for filtering: 

– Model: X(t) = sin(at) + N(t); N(t) ~ N(0, 2).
– Uncertain model:  unknown.

• Example for classification:
– Model: f(x|0) ~ N(μ, Σ).
– Uncertain model: μ or Σ, possibly both, unknown. 

Uncertainty Class of Models



9/3/2016 http://gsp.tamu.edu 99/3/2016 http://gsp.tamu.edu

• Assume is a prior distribution () governing the 
likelihood that some model  is the full (true) model.
– Prior distribution encodes our belief concerning the likelihood 

that any  corresponds to the full model. 
– π() may be often uniform.
– Prior construction requires transforming knowledge into a 

form that is relevant to modeling uncertainty. 

• Given a random sample (new data) from the full model, 
we deduce the posterior distribution *() = (|S).
– The posterior distribution characterizes our understanding of 

the uncertainty class: prior knowledge + data.

Prior and Posterior Distributions
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Prior + Data = Posterior

• The prior distribution represents the state of our 
knowledge prior to the data; the posterior represents the 
state of our knowledge after joining the prior with the 
data.
– Data reduces the uncertainty in the prior – less variance. 
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Intrinsically Bayesian Robust Operator

• An IBR operator minimizes the expected value of the 
cost among all operators in a class Ψ: 

• E[C(IBR)] = min{E[C()],   }.

• E[C()] = C1()(1) + C2 ()(2) + ... + Cm ()(m)

• E[C()] =   C()()d

• If the operator class is finite, then the minimum is over a 
finite set. 

xg
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Optimal Bayesian Classifier

• Optimal Bayesian classifier (OBC) uses the posterior.
– Gaussian model: π(μ, Σ) → π*(μ, Σ) = π(μ, Σ | S) 

• E[[OBC]] = min{E[[]],   } 

• Effective class conditional densities:

– f(x|0; ) = E[f(x|0; )]; expectation with respect to π*

– f(x|1; ) = E[f(x|1; )]; expectation with respect to π*

• Bayes Classifier OBC(x) = 1 if f(x|1;)  f(x|0;);
OBC(x) = 0 if f(x|1;) < f(x|0;). 

xg
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OBC for Gaussian Model

• Polynomial Optimal 
Bayesian Classifier (red line)
– Dotted lines are level curves 

for the Gaussian class-
conditional densities 
corresponding to the expected 
means and (equal) covariances 
for a given posterior. 

– Black solid line is linear 
classifier corresponding to the 
Bayes classifier for the 
expected mean and covariance 
parameters (naive). 
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Convergence of the OBC

• In the Gaussian and multinomial models, as n  the 
OBC converges to the Bayes classifier for the true 
feature-label distribution.
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Synthesis Protocol with Uncertainty

• 1. Construct the mathematical model.  
• 2. Define a class of operators.
• 3. Define optimization problem via a cost function.
• 4. Solve optimization via model characteristics.
• 5. Identify the uncertainty class.
• 6. Construct a prior distribution.
• 7. State the IBR optimization problem.
• 8. Construct the effective characteristics.
• 9. Prove that IBR optimization is solved by replacing 

the model characteristics by effective characteristics.
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IBR Wiener Filtering

• Uncertainty class: jointly WSS random processes.   
• Optimization: minimize E[MSE] between true signal 

and filtered observation signal.
– Expected because the signals depend on .

• 4. Effective power spectra are Fourier transforms of the 
expected auto- and cross-correlation functions: S,X() 
= F[E[r,X]]() and S,YX() = F[E[r,YX]](). The 
Fourier transform of the IBR weighting function is

• G() = S,YX()/S.X()
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IBR Wiener Protocol

• 5. The uncertainty class is defined by the uncertain 
parameters in the autocorrelation and cross-correlation 
functions.

• 6. A prior/posterior distribution is constructed for these 
parameters.

• 7. IBR optimization: minimize the expected MSE. 
• 8. Effective characteristics: effective power spectra.
• 9. Prove that the IBR optimization problem is solved 

by replacing the model characteristics by the effective 
characteristics.
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Measuring Uncertainty

• Uncertainty in parameters that do not affect operator 
design is no concern.

• Requirements of an uncertainty measure
– Measure should be based on the objective of the model.
– Uncertainty should be quantified in terms of the expected cost 

it induces with respect to the operator class.

• Entropy does not satisfy these requirements.
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Objective Cost of Uncertainty

• IBR optimality: E[C(IBR)]  E[C()] for any . 
• If  is optimal for , then C()  C(IBR).
• For any   , the objective cost of uncertainty (OCU) 

relative to  is OCU() = C(IBR)  C(). 
• OCU for the uncertainty class, OCU(), is the OCU 

relative to the full model, which is not known.
• Mean objective cost of uncertainty (MOCU):

• MOCU() = E[OCU()] = E[C(IBR)  C()]   
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Optimal Experimental Design

• If MOCU  0, then, on average,  C(IBR)  C().
– If prior is concentrated around full model (plus some 

regularity conditions), expect IBR to be close to optimal. 

• To get a new posterior, among the set of possible 
experiments, choose the experiment with minimum 
expected remaining MOCU given the experiment. 
– For each possible experiment, compute remaining MOCU for 

all possible outcomes, average these MOCUs, take the 
minimum of these averages, and do experiment. Iterate.

• Result optimal experimental design relative to the cost 
function and the objective uncertainty.
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Optimal versus Random – Wiener
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Uncertain Mammalian Cell Cycle Network
• Binary model of mammalian cell cycle.

– Construct is network model, plus assumption of binary relations.
– Data are used to estimate model relations.
– Uncertainty class from multiple possible constructs or relations.
– Objective: if Rb = CycD = 0, the cell cycles in the absence of a 

growth factor, so alter logic.
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Optimal versus Random – Gene Network
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Design Shape Memory Alloy

• Goal: Design a shape memory alloy with low 
dissipation energy.
– Dissipate little energy (heat) under load.

• Problem: Design a material with the lowest energy 
dissipation at a specific temperature where the aim of 
the experimental design is to suggest the best dopant 
(added impurity) and concentration for the next 
measurement. 
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Optimal versus Random – Materials 
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Issues for Design under Uncertainty
• Prior Construction

– Transforming scientific knowledge into constraints and 
probabilistic knowledge relevant to the design problem.

• Computation – especially for non-Gaussian models
– Efficient MCMC algorithms.
– Efficient architectures.
– Model compression while keeping relevant information.

• Building models compatible with experiments.
• There is no notion of scientific validity because there 

is no actual model to experimentally validate.
– Modeling our knowledge serves as a practical construct from 

which to derive an “optimal” action in the world.


