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The Core Engineering Problem: Synthesis

The fundamental problem: given a system, synthesize an
operator to operate on the system in a desirable manner.

— Classification: Make decisions.

— Filtering (regression): Make optimal estimates; for instance,
given a degraded signal, estimate the true signal.

— Control: Alter the dynamical behavior of the system.

Synthesis starts with a mathematical theory constituting
the relevant scientific knowledge and the theory 1s used
to derive an optimal operator for some objective.

Science constructs models; engineering operates on

them.
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Synthesis Protocol

1. Construct the mathematical model.
2. Define a class of operators.
3. Define the optimization problem via a cost function.

4. Solve the optimization problem.
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Wiener Filtering

1. Model: two jointly WSS random processes, true signal Y and
observation signal X.
— Autocorrelation, E[X(t)X(t 7 )], 1s a function of t — t’

2. Operator class consists of linear filters on the observed signal:
WX = 2a<s<p 9L S)X(S)
3. Cost 1s the mean-square error between Y and y(X):

MSE =% . i< YO — wX)(D)

4. Optimization: the Fourier transform of the optimal g 1s given in
terms of the power spectral density of the observed signal and the
cross power spectral density, which are the Fourier transforms of
the auto- and cross-correlation functions, respectively:

* G(m) = Syx(0)/Sx(w)
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Filtering Blurred Signal + Noise

 Filter model
— Original signal: S
— Blurred signal + white noise: B(S) +n
— Filtered noisy signal: y[B(S) + n]

* Linear optimization problem

— Find v to minimize distance between y[B(S) + n] and s
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Optimal Classification

1. Construct the feature-label distribution.

2. The operators consist of classifiers (decisions).

3. The cost 1s classifier error.

4. An optimal operator 1s given by a Bayes classifier.

Class conditional densities:
f(x|0) and f(x|1).

JaN

» Bayes Classifier vy, (x) = 1 if (x|1) > f(x|0);
Way(X) = 0 1f T(x[1) <1(x]0).
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Gaussian Model

1. Feature-label distribution: two Gaussian class-
conditional distributions.

2. The operators consist of classifiers (decisions).
3. The cost 1s classifier error.

4. An optimal operator 1s given by a Bayes classifier.
— Linear discriminant for equal covariance matrices.
— Quadratic discriminant for unequal covariance matrices.
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Uncertainty Class of Models

With complex systems, model parameters cannot be
accurately estimated due to lack of data — Small Data.

Partial knowledge provides uncertainty class of models.

=10, 0,,..., 0}

— Model uncertainty is not about randomness within a model,
but that we can only identify a class of possible models.

Example for filtering:

— Model: X(t) = sin(at) + N(t); N(t) ~ N(0, c?).

— Uncertain model: o unknown.

Example for classification:

— Model: f(x]0) ~ N(p, X).

— Uncertain model: p or X, possibly both, unknown.
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Prior and Posterior Distributions

* Assume is a prior distribution n(0) governing the
likelihood that some model 0 1s the full (true) model.

— Prior distribution encodes our belief concerning the likelihood
that any O corresponds to the full model.

— 1(0) may be often uniform.

— Prior construction requires transforming knowledge into a
form that is relevant to modeling uncertainty.

e (Given a random sample (new data) from the full model,
we deduce the posterior distribution 7°(0) = 7(6]S).

— The posterior distribution characterizes our understanding of

the uncertainty class: prior knowledge + data.
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Prior + Data = Posterior

The prior distribution represents the state of our
knowledge prior to the data; the posterior represents the
state of our knowledge after joining the prior with the
data.

— Data reduces the uncertainty in the prior — less variance.

. Collect data jk | Collect data

&0 8o Bo

9/3/2016 http://gsp.tamu.edu




Genomlc Slgnal Processmg Labcratory

Intrinsically Bayesian Robust Operator

An IBR operator minimizes the expected value of the
cost among all operators 1n a class V:

EolCo(wipr)] = min{Eg[Cy(y)], v € Y}

Eo[Co(w)] = Cqi(w)1(0)) + Cgp (w)1(0,) + ... + Copy (w)1(O,)

Eo[Co(w)] = [oCo(y)m(0)dO

If the operator class 1s finite, then the minimum 1s over a

finite set.
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Optimal Bayesian Classifier

Optimal Bayesian classifier (OBC) uses the posterior.
— Gaussian model: n(p, X) — 7 (n, X) = n(pn, X | S)

EoleolWorcll = min{Eg[go[y]], v € W}
Effective class conditional densities:

— 1(x|0; ®) = Eg[f(x|0; 0)]; expectation with respect to "

— f(x|1; ©®) = Eg[f(x|1; 0)]; expectation with respect to T

Bayes Classifier yop(x) = 1 if f(x]|1;0) > 1(x|0;0);
Wopc(X) = 0 if f(x[1;0) < 1(x]0;0).
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* Polynomial Optimal
Bayesian Classifier (red line)

9/3/2016

Dotted lines are level curves
for the Gaussian class-
conditional densities
corresponding to the expected
means and (equal) covariances
for a given posterior.

Black solid line 1s linear
classifier corresponding to the
Bayes classifier for the
expected mean and covariance
parameters (naive).
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OBC for Gaussian Model

K
—linear (plug-in)
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Convergence of the OBC

* In the Gaussian and multinomial models, as h — oo the
OBC converges to the Bayes classifier for the true
feature-label distribution.

Bayes

/ Collect data / Collect data /
/
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Synthesis Protocol with Uncertainty

1. Construct the mathematical model.

2. Define a class of operators.

3. Define optimization problem via a cost function.
4. Solve optimization via model characteristics.

5. Identify the uncertainty class.

6. Construct a prior distribution.

/. State the IBR optimization problem.
8. Construct the effective characteristics.

9. Prove that IBR optimization 1s solved by replacing
the model characteristics by effective characteristics.
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IBR Wiener Filtering

Uncertainty class: jointly WSS random processes.

Optimization: minimize Eg[MSE,] between true signal
and filtered observation signal.
— Expected because the signals depend on 0.

4. Effective power spectra are Fourier transforms of the
expected auto- and cross-correlation functions: Sg y(®)

= FEg[rox]l(®) and Sg yx(®) = FEe[ryyx]](®). The
Fourier transform of the IBR weighting function 1s

G(®) = S yx(®)/Sg x(®)
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IBR Wiener Protocol

5. The uncertainty class 1s defined by the uncertain
parameters 1n the autocorrelation and cross-correlation
functions.

6. A prior/posterior distribution 1s constructed for these

parameters.
7. IBR optimization: minimize the expected MSE.
8. Effective characteristics: effective power spectra.

9. Prove that the IBR optimization problem 1s solved
by replacing the model characteristics by the effective

characteristics.
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Measuring Uncertainty

Uncertainty in parameters that do not affect operator
design 1s no concern.

Requirements of an uncertainty measure
— Measure should be based on the objective of the model.

— Uncertainty should be quantified in terms of the expected cost
it induces with respect to the operator class.

Entropy does not satisfy these requirements.
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Objective Cost of Uncertainty

IBR optimality: Ee[Cy(Wysp)] < Ee[Co(y)] for any v.
If vy, 1s optimal for O, then Cy(yy) < Co(Wigr)-

For any 6 € ©®, the objective cost of uncertainty (OCU)
relative to 0 1s OCU(O) = Cy(wgr) — Co(wy).

OCU for the uncertainty class, OCU(®), 1s the OCU
relative to the full model, which 1s not known.

Mean objective cost of uncertainty (MOCU):

 MOCU(O) = Eg[OCU(D)] = Eg[Co(wigr) — Co(wy)]
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Optimal Experimental Design

If MOCU = 0, then, on average, Cy(wgr) = Co(Wy).

— If prior 1s concentrated around full model (plus some
regularity conditions), expect IBR to be close to optimal.
To get a new posterior, among the set of possible
experiments, choose the experiment with minimum
expected remaining MOCU given the experiment.

— For each possible experiment, compute remaining MOCU for
all possible outcomes, average these MOCUSs, take the
minimum of these averages, and do experiment. Iterate.

« Result optimal experimental design relative to the cost

function and the objective uncertainty.
9/3/2016 http://gsp.tamu.edu
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Optimal versus Random — Wiener
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Uncertain Mammalian Cell Cycle Network

* Binary model of mammalian cell cycle.

— Construct 1s network model, plus assumption of binary relations.

— Data are used to estimate model relations.

— Uncertainty class from multiple possible constructs or relations.

— Objective: 1f Rb = CycD = 0, the cell cycles in the absence of a

growth factor, so alter logic.

E2F

CycA ) Cdc20

C UbcH10

Product

Predictors

CycD
Rb
E2F
CycE
CycA
Cdc20
Cdhl

Ubc
CycB

Input

(CycD A CycE A CycA A CycB)

(E2F A RD)

(E2F A Rb A Cdc20 A (Cdhl A Ubc)) v (CycA A Rb »

Cdc20 A (Cdhl A Ubc))

CycB

(CycA A CycB) v (Cdc20)
(Cdh1) v (Cdhl A Ubc #
(Cdc20 A Cdh1l)

(Cdc20 v CycA v CycB))
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Optimal versus Random — Gene Network

—&— Random Selection
—¢— Optimal Experimental Design
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Design Shape Memory Alloy

* Goal: Design a shape memory alloy with low
dissipation energy.
— Dissipate little energy (heat) under load.

Problem: Design a material with the lowest energy
dissipation at a specific temperature where the aim of
the experimental design 1s to suggest the best dopant
(added impurity) and concentration for the next
measurement.
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Optimal versus Random — Materials

—h— Optimal Experimental Design
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Issues for Design under Uncertainty

Prior Construction

— Transforming scientific knowledge into constraints and
probabilistic knowledge relevant to the design problem.

Computation — especially for non-Gaussian models
— Efficient MCMC algorithms.

— Efficient architectures.

— Model compression while keeping relevant information.

Building models compatible with experiments.

There is no notion of scientific validity because there
is no actual model to experimentally validate.

— Modeling our knowledge serves as a practical construct from
which to derive an “optimal” action in the world.
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